На малюнку зображено графік функції та позначені точки 7 3. Похідна функції

З'явилися нові завдання. Давайте розберемо їхнє рішення.

Прототип завдання B8 (№ 317543)

На малюнку зображено графік функції y=f(x) та зазначено точки -2, -1, 1, 2. У якій із цих точок значення похідної найбільше? У відповіді вкажіть цю точку.

Як ми знаємо, називається

межа відношення збільшення функції до збільшення аргументу, коли збільшення аргументу прагне до нуля:

Похідна у точці показує швидкість зміни функціїу цій точці. Чим швидше змінюється функція, тобто чим більше збільшення функції, тим більше кут нахилу дотичної. Оскільки завдання вимагає визначити точку, у якій значення похідної найбільше, виключимо з розгляду точки з абсцисами -1 і 1 - у цих точках функція зменшується, і похідна у яких негативна.

Функція зростає в точках -2 і 2. Однак, зростає вона в них по-різному - у точці -2 графік функції піднімається крутіше, ніж у точці 2, і, отже, збільшення функції у цій точці, отже, і похідна - більше.

Відповідь: -2

І аналогічне завдання:

Прототип завдання B8 (№ 317544)

На малюнку зображено графік функції та зазначено точки -2, -1, 1, 4. У якій із цих точок значення похідної найменше? У відповіді вкажіть цю точку.


Вирішення цього завдання аналогічне рішенню попередньої "з точністю до навпаки"

Нас цікавить точка, в якій похідна набуває найменшого значення, тобто ми шукаємо точку, в якій функція зменшується найшвидше - на графіку це точка, в якій найкрутіший "спуск". Це точка з абсцисою 4.

Дорогі друзі! До групи завдань, пов'язаних з похідною, входять завдання — в умові дано графік функції, кілька точок на цьому графіку і стоїть питання:

У якій точці значення похідної найбільше (найменше)?

Коротко повторимо:

Похідна в точці дорівнює кутовому коефіцієнту дотичної проходить черезцю точку графіка.

Уголовний коефіцієнт дотичної у свою чергу дорівнює тангенсу кута нахилу цієї дотичної.

*Мається на увазі кут між дотичною та віссю абсцис.

1. На інтервалах зростання функції похідна має позитивне значення.

2. На інтервалах її спадання похідна має негативне значення.


Розглянемо наступний ескіз:


У точках 1,2,4 похідна функції має негативне значення, оскільки ці точки належать інтервалам спадання.

У точках 3,5,6 похідна функції має позитивне значення, оскільки ці точки належать інтервалам зростання.

Як бачимо, зі значенням похідної все ясно, тобто визначити який вона має знак (позитивний чи негативний) у певній точці графіка зовсім нескладно.

При чому, якщо ми подумки побудуємо дотичні в цих точках, то побачимо, що прямі кути, що проходять через точки 3, 5 і 6 утворюють з віссю оХ, що лежать в межах від 0 до 90 про, а прямі проходять через точки 1, 2 і 4 утворюють з віссю оХ кути в межах від 90 до 180 о.

*Взаємозв'язок зрозумілий: дотичні проходять через точки належать інтервалам зростання функції утворюють з віссю оХ гострі кути, дотичні проходять через точки належать інтервалам зменшення функції утворюють з віссю оХ тупі кути.

Тепер важливе питання!

А як змінюється значення похідної? Адже дотична у різних точках графіка безперервної функції утворює різні кути, залежно від цього, через яку точку графіка вона проходить.

*Або, кажучи простою мовою, дотична розташована як би «горизонтальніше» або «вертикальніше». Подивіться:

Прямі утворюють з віссю оХ кути в межах від 0 до 90 о


Прямі утворюють з віссю оХ кути в межах від 90 до 180 о


Тому, якщо стоятимуть питання:

— в якій із точок графіка значення похідної має найменше значення?

— у якій із точок графіка значення похідної має найбільше значення?

то для відповіді необхідно розуміти, як змінюється значення тангенсу кута дотичної в межах від 0 до 180 о.

*Як уже сказано, значення похідної функції в точці дорівнює тангенсу кута нахилу дотичної до осі оХ.

Значення тангенсу змінюється так:

При зміні кута нахилу прямої від 0 до 90 про значення тангенса, а значить і похідної, змінюється відповідно від 0 до +∞;

При зміні кута нахилу прямий від 90 до 180 значення тангенса, а значить і похідної, змінюється відповідно –∞ до 0.

Наочно це видно за графіком функції тангенсу:

Говорячи простою мовою:

При куті нахилу дотичної від 0 до 90 про

Чим він ближче до 0о, тим більше значення похідної буде близько до нуля (з позитивного боку).

Чим кут ближче до 90о, тим більше значення похідної буде збільшуватися до +∞.

При куті нахилу дотичної від 90 до 180 про

Чим він ближчий до 90 про, тим більше значення похідної зменшуватиметься до –∞.

Чим кут буде ближче до 180 про, тим більше значення похідної буде близько до нуля (з негативного боку).

317543. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 2. У якій із цих точок значення похідної найбільше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам на яких функція зменшується (це точки -1 і 1) і два інтервалам на яких функція зростає (це точки -2 і 2).

Можемо відразу зробити висновок у тому, що у точках –1 і 1 похідна має негативне значення, у точках –2 і 2 вона має позитивне значення. Отже в даному випадку необхідно проаналізувати точки -2 і 2 і визначити в якому значення буде найбільшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці –2 буде найбільшим.

Відповімо на таке запитання: у якій із точок –2, –1, 1 чи 2 значення похідної є найбільшим негативним? У відповіді вкажіть цю точку.

Похідна матиме негативне значення в точках, що належать інтервалам спадання, тому розглянемо точки -2 і 1. Побудуємо дотичні проходять через них:


Бачимо, що тупий кут між прямою b і віссю оХ знаходиться «ближче» до 180о , Тому його тангенс буде більше тангенса кута, утвореного прямою а і віссю ОХ.

Таким чином, у точці х = 1 значення похідної буде найбільшим негативним.

317544. На малюнку зображено графік функції y = f(x) та відзначені точки–2, –1, 1, 4. У якій із цих точок значення похідної найменше? У відповіді вкажіть цю точку.


Маємо чотири точки: дві з них належать інтервалам, на яких функція зменшується (це точки –1 та 4) та дві інтервалам, на яких функція зростає (це точки –2 та 1).

Можемо відразу зробити висновок у тому, що у точках –1 і 4 похідна має негативне значення, у точках –2 і 1 вона має позитивне значення. Отже, у разі необхідно проаналізувати точки –1 і 4 і визначити – у якому їх значенні буде найменшим. Побудуємо дотичні, що проходять через зазначені точки:


Значення тангенсу кута між прямою a і віссю абсцис буде більшим за значення тангенса кута між прямою b і цією віссю. Це означає, що значення похідної у точці х = 4 буде найменшим.

Відповідь: 4

Сподіваюся, що «не перенавантажив» вас кількістю написаного. Насправді все дуже просто, варто тільки зрозуміти властивості похідної, її геометричний зміст і як змінюється значення тангенса кута від 0 до 180 о.

1. Спочатку визначте знаки похідної в даних точках (+ або -) та оберіть необхідні точки (залежно від поставленого питання).

2. Побудуйте дотичні у цих точках.

3. Користуючись графіком тангесоїди, схематично позначте кути та відобразітьА Олександр.

PS: Буду вдячний Вам, якщо розповісте про сайт у соціальних мережах.

У задачі B9 дається графік функції або похідної, яким потрібно визначити одну з наступних величин:

  1. Значення похідної в деякій точці x 0
  2. Точки максимуму або мінімуму (точки екстремуму),
  3. Інтервали зростання та зменшення функції (інтервали монотонності).

Функції та похідні, представлені у цій задачі, завжди безперервні, що значно спрощує рішення. Незважаючи на те, що завдання відноситься до розділу математичного аналізу, вона цілком під силу навіть найслабшим учням, оскільки ніяких глибоких теоретичних знань тут не потрібно.

Для знаходження значення похідної, точок екстремуму та інтервалів монотонності існують прості та універсальні алгоритми – всі вони будуть розглянуті нижче.

Уважно читайте умову завдання B9, щоб не допускати дурних помилок: іноді трапляються досить об'ємні тексти, але важливих умов, які впливають на перебіг рішення, там небагато.

Обчислення значення похідної. Метод двох точок

Якщо в задачі дано графік функції f(x), що стосується цього графіка в деякій точці x 0 і потрібно знайти значення похідної в цій точці, застосовується наступний алгоритм:

  1. Знайти на графіку дотичної дві «адекватні» точки: їх координати мають бути цілими. Позначимо ці точки A (x 1 ; y 1) і B (x 2 ; y 2). Правильно виписуйте координати - це ключовий момент рішення, і будь-яка помилка тут призводить до неправильної відповіді.
  2. Знаючи координати, легко обчислити збільшення аргументу Δx = x 2 − x 1 і збільшення функції Δy = y 2 − y 1 .
  3. Зрештою, знаходимо значення похідної D = Δy/Δx. Іншими словами, треба розділити збільшення функції на збільшення аргументу — і це буде відповідь.

Ще раз зазначимо: точки A і B треба шукати саме на дотичній, а не графіку функції f(x), як це часто трапляється. Стосовно обов'язково міститиме хоча б дві такі точки — інакше завдання складено некоректно.

Розглянемо точки A (−3; 2) та B (−1; 6) і знайдемо збільшення:
Δx = x 2 − x 1 = −1 − (−3) = 2; Δy = y 2 − y 1 = 6 − 2 = 4.

Знайдемо значення похідної: D = y/Δx = 4/2 = 2.

Завдання. На малюнку зображено графік функції y = f(x) та дотична до нього в точці з абсцисою x0. Знайдіть значення похідної функції f(x) у точці x 0 .

Розглянемо точки A (0; 3) та B (3; 0), знайдемо збільшення:
Δx = x 2 − x 1 = 3 − 0 = 3; Δy = y 2 − y 1 = 0 − 3 = −3.

Тепер знаходимо значення похідної: D = Δy/Δx = −3/3 = −1.

Завдання. На малюнку зображено графік функції y = f(x) та дотична до нього в точці з абсцисою x0. Знайдіть значення похідної функції f(x) у точці x 0 .

Розглянемо точки A (0; 2) і B (5; 2) і знайдемо збільшення:
Δx = x 2 − x 1 = 5 − 0 = 5; Δy = y 2 − y 1 = 2 − 2 = 0.

Залишилося знайти значення похідної: D = y/Δx = 0/5 = 0.

З останнього прикладу можна сформулювати правило: якщо дотична паралельна до осі OX, похідна функції в точці дотику дорівнює нулю. У цьому випадку навіть не треба нічого рахувати — достатньо поглянути на графік.

Обчислення точок максимуму та мінімуму

Іноді замість графіка функції завдання B9 дається графік похідної і потрібно знайти точку максимуму чи мінімуму функції. При такому розкладі метод двох точок марний, але існує інший, ще більш простий алгоритм. Спочатку визначимося з термінологією:

  1. Точка x 0 називається точкою максимуму функції f(x), якщо в околиці цієї точки виконується нерівність: f(x 0) ≥ f(x).
  2. Точка x 0 називається точкою мінімуму функції f(x), якщо в околиці цієї точки виконується нерівність: f(x 0) ≤ f(x).

Для того щоб знайти точки максимуму та мінімуму за графіком похідної, достатньо виконати такі кроки:

  1. Перекреслити графік похідної, забравши всю зайву інформацію. Як показує практика, зайві дані лише заважають рішенню. Тому наголошуємо на координатній осі нулі похідної — і все.
  2. З'ясувати похідні знаки на проміжках між нулями. Якщо для деякої точки x 0 відомо, що f'(x 0) ≠ 0, то можливі лише два варіанти: f'(x 0) ≥ 0 або f'(x 0) ≤ 0. Знак похідної легко визначити за вихідним кресленням: якщо графік похідної лежить вище за осю OX, значить f'(x) ≥ 0. І навпаки, якщо графік похідної проходить під віссю OX, то f'(x) ≤ 0.
  3. Знову перевіряємо нулі та знаки похідної. Там, де знак змінюється з мінусу на плюс, точка мінімуму. І навпаки, якщо знак похідної змінюється із плюсу на мінус, це точка максимуму. Відлік завжди ведеться зліва направо.

Ця схема працює тільки для безперервних функцій — інших задач B9 не зустрічається.

Завдання. На малюнку зображено графік похідної функції f(x), визначеної на відрізку [-5; 5]. Знайдіть точку мінімуму функції f(x) у цьому відрізку.

Позбавимося зайвої інформації - залишимо тільки межі [-5; 5] і нулі похідної x = −3 та x = 2,5. Також відзначимо знаки:

Очевидно, у точці x = −3 знак похідної змінюється з мінусу на плюс. Це і є точка мінімуму.

Завдання. На малюнку зображено графік похідної функції f(x), визначеної на відрізку [−3; 7]. Знайдіть точку максимуму функції f(x) у цьому відрізку.

Перекреслимо графік, залишивши на координатній осі лише межі [−3; 7] і нулі похідної x = −1,7 та x = 5. Зазначимо на отриманому графіку знаки похідної. Маємо:

Очевидно, у точці x = 5 знак похідної змінюється з плюсу на мінус – точка максимуму.

Завдання. На малюнку зображено графік похідної функції f(x), визначеної на відрізку [-6; 4]. Знайдіть кількість точок максимуму функції f(x), що належать відрізку [−4; 3].

З умови завдання слід, що досить розглянути лише частину графіка, обмежену відрізком [-4; 3]. Тому будуємо новий графік, у якому відзначаємо лише межі [−4; 3] та нулі похідної всередині нього. А саме точки x = −3,5 і x = 2. Отримуємо:

На цьому графіку є лише одна точка максимуму x=2. Саме в ній знак похідної змінюється з плюсу на мінус.

Невелике зауваження щодо точок з нецілочисельними координатами. Наприклад, в останній задачі було розглянуто точку x = −3,5, але з тим самим успіхом можна взяти x = −3,4. Якщо завдання складено коректно, такі зміни не повинні впливати на відповідь, оскільки точки без певного місця проживання не беруть безпосередньої участі у вирішенні завдання. Зрозуміло, з цілими точками такий фокус не пройде.

Знаходження інтервалів зростання та зменшення функції

У такій задачі, подібно до точок максимуму і мінімуму, пропонується за графіком похідної відшукати області, в яких сама функція зростає або зменшується. Для початку визначимо, що таке зростання та спадання:

  1. Функція f(x) називається зростаючою на відрізку якщо для будь-яких двох точок x 1 і x 2 з цього відрізка правильне твердження: x 1 ≤ x 2 ⇒ f(x 1) ≤ f(x 2). Іншими словами, що більше значення аргументу, то більше значення функції.
  2. Функція f(x) називається спадною на відрізку якщо для будь-яких двох точок x 1 і x 2 з цього відрізка правильне твердження: x 1 ≤ x 2 ⇒ f(x 1) ≥ f(x 2). Тобто. більшого значення аргументу відповідає менше значення функції.

Сформулюємо достатні умови зростання та спадання:

  1. Щоб безперервна функція f(x) зростала на відрізку , достатньо, щоб її похідна всередині відрізка була позитивна, тобто. f'(x) ≥ 0.
  2. Щоб безперервна функція f(x) убувала на відрізку , достатньо, щоб її похідна всередині відрізка була негативна, тобто. f'(x) ≤ 0.

Приймемо ці твердження без доказів. Таким чином, отримуємо схему для знаходження інтервалів зростання та спадання, яка багато в чому схожа на алгоритм обчислення точок екстремуму:

  1. Забрати всю зайву інформацію. На вихідному графіку похідної нас цікавлять насамперед нулі функції, тому залишимо лише їх.
  2. Позначити похідні знаки на інтервалах між нулями. Там, де f'(x) ≥ 0, функція зростає, а де f'(x) ≤ 0 – зменшується. Якщо завдання встановлено обмеження на змінну x, додатково позначаємо їх у новому графіці.
  3. Тепер, коли нам відома поведінка функції та обмеження, залишається обчислити необхідну в завданні величину.

Завдання. На малюнку зображено графік похідної функції f(x), визначеної на відрізку [−3; 7,5]. Знайдіть проміжки зменшення функції f(x). У відповіді вкажіть суму цілих чисел, що входять до цих проміжків.

Як завжди, перекреслимо графік та відзначимо межі [−3; 7,5], а також нулі похідної x = −1,5 та x = 5,3. Потім відзначимо похідні знаки. Маємо:

Оскільки на інтервалі (− 1,5) похідна негативна, це і є інтервал зменшення функції. Залишилося підсумувати всі цілі числа, що знаходяться всередині цього інтервалу:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.

Завдання. На малюнку зображено графік похідної функції f(x), визначеної на відрізку [−10; 4]. Знайдіть проміжки зростання функції f(x). У відповіді вкажіть довжину найбільшого їх.

Позбавимося зайвої інформації. Залишимо лише межі [−10; 4] і нулі похідної, яких цього разу виявилося чотири: x = −8, x = −6, x = −3 та x = 2. Зазначимо знаки похідної та отримаємо наступну картинку:

Нас цікавлять періоди зростання функції, тобто. такі, де f'(x) ≥ 0. На графіку таких проміжків два: (−8; −6) та (−3; 2). Обчислимо їх довжини:
l 1 = − 6 − (−8) = 2;
l 2 = 2 − (−3) = 5.

Оскільки потрібно знайти довжину найбільшого інтервалу, у відповідь записуємо значення l 2 = 5.

Похідна функції - одна із складних тем у шкільній програмі. Не кожен випускник дасть відповідь на запитання, що таке похідна.

У цій статті просто і зрозуміло розказано про те, що таке похідна і для чого вона потрібна. Ми не будемо зараз прагнути математичної суворості викладу. Найголовніше – зрозуміти сенс.

Запам'ятаємо визначення:

Похідна – це швидкість зміни функції.

На малюнку – графіки трьох функцій. Як ви вважаєте, яка з них швидше росте?

Відповідь очевидна – третя. У неї найбільша швидкість зміни, тобто найбільша похідна.

Ось інший приклад.

Костя, Гриша та Матвій одночасно влаштувалися на роботу. Подивимося, як змінювався їхній дохід протягом року:

На графіці відразу все видно, чи не так? Дохід Кості за півроку зріс більш ніж удвічі. І у Гриші дохід теж зріс, але зовсім трохи. А прибуток Матвія зменшився до нуля. Стартові умови однакові, а швидкість зміни функції, тобто похідна, - Різна. Що ж до Матвія - у його доходу похідна взагалі негативна.

Інтуїтивно ми легко оцінюємо швидкість зміни функції. Але як це робимо?

Насправді ми дивимося, наскільки круто йде нагору (або вниз) графік функції. Іншими словами - наскільки швидко змінюється у зі зміною х. Очевидно, що та сама функція в різних точках може мати різне значення похідної - тобто може змінюватися швидше або повільніше.

Похідна функції позначається.

Покажемо як знайти за допомогою графіка.

Намальовано графік деякої функції. Візьмемо на ньому крапку з абсцисою. Проведемо у цій точці дотичну до графіку функції. Ми хочемо оцінити, наскільки круто вгору йде графік функції. Зручна величина для цього - тангенс кута нахилу дотичної.

Похідна функції у точці дорівнює тангенсу кута нахилу дотичної, проведеної графіку функції у цій точці.

Зверніть увагу - як кут нахилу дотичної ми беремо кут між дотичним і позитивним напрямом осі.

Іноді учні запитують, що таке, що стосується графіку функції. Це пряма, що має на даній ділянці єдину загальну точку з графіком, причому так, як показано на малюнку. Схоже на дотичну до кола.

Знайдемо. Ми пам'ятаємо, що тангенс гострого кута прямокутного трикутника дорівнює відношенню протилежного катета до прилеглого. З трикутника:

Ми знайшли похідну за допомогою графіка навіть не знаючи формулу функції. Такі завдання часто зустрічаються в ЄДІ з математики під номером.

Є й інше важливе співвідношення. Згадаймо, що пряма задається рівнянням

Величина у цьому рівнянні називається кутовим коефіцієнтом прямої. Вона дорівнює тангенсу кута нахилу прямої до осі.

.

Ми отримуємо, що

Запам'ятаємо цю формулу. Вона виражає геометричний зміст похідної.

Похідна функції у точці дорівнює кутовому коефіцієнту дотичної, проведеної графіку функції у цій точці.

Іншими словами, похідна дорівнює тангенсу кута нахилу дотичної.

Ми вже сказали, що в однієї й тієї функції в різних точках може бути різна похідна. Подивимося, як пов'язана похідна з поведінкою функції.

Намалюємо графік деякої функції. Нехай на одних ділянках ця функція зростає, на інших – зменшується, причому з різною швидкістю. І нехай ця функція матиме точки максимуму і мінімуму.

У точці функція зростає. Дотична до графіка, проведена в точці, утворює гострий кут з позитивним напрямом осі. Отже, у точці похідна позитивна.

У точці наша функція зменшується. Стосовна у цій точці утворює тупий кут з позитивним напрямом осі. Оскільки тангенс тупого кута негативний, у точці похідна негативна.

Ось що виходить:

Якщо функція зростає, її похідна є позитивною.

Якщо зменшується, її похідна негативна.

А що ж буде у точках максимуму та мінімуму? Ми бачимо, що у точках (точка максимуму) та (точка мінімуму) дотична горизонтальна. Отже, тангенс кута нахилу дотичної в цих точках дорівнює нулю, і похідна також дорівнює нулю.

Крапка - точка максимуму. У цій точці зростання функції змінюється зменшенням. Отже, знак похідної змінюється у точці з плюсу на мінус.

У точці - точці мінімуму - похідна теж дорівнює нулю, але її знак змінюється з мінусу на плюс.

Висновок: за допомогою похідної можна дізнатися про поведінку функції, що нас цікавить.

Якщо похідна позитивна, то функція зростає.

Якщо похідна негативна, то функція зменшується.

У точці максимуму похідна дорівнює нулю і змінює знак із «плюсу» на «мінус».

У точці мінімуму похідна теж дорівнює нулю і змінює знак з мінусу на плюс.

Запишемо ці висновки у вигляді таблиці:

зростає точка максимуму зменшується точка мінімуму зростає
+ 0 - 0 +

Зробимо два невеликі уточнення. Одне з них знадобиться вам під час вирішення завдань ЄДІ. Інше - першому курсі, за більш серйозному вивченні функцій і похідних.

Можливий випадок, коли похідна функції у будь-якій точці дорівнює нулю, але ні максимуму, ні мінімуму у функції у цій точці немає. Це так звана :

У точці дотична до графіка горизонтальна і похідна дорівнює нулю. Однак до точки функція зростала – і після точки продовжує зростати. Знак похідної не змінюється – вона як була позитивною, так і залишилася.

Буває й так, що в точці максимуму чи мінімуму похідна не існує. На графіці це відповідає різкому зламу, коли дотичну у цій точці провести неможливо.

Як знайти похідну, якщо функція задана не графіком, а формулою? У цьому випадку застосовується