Урок и презентация на тему: "Числовая окружность: определение, общий вид, длина. Единичная окружность"

В этой статье мы очень подробно разберем определение числовой окружности, узнаем её главное свойство и расставим числа 1,2,3 и т.д. Про то, как отмечать другие числа на окружности (например, \(\frac{π}{2}, \frac{π}{3}, \frac{7π}{4}, 10π, -\frac{29π}{6}\)) разбирается в .

Числовой окружностью называют окружность единичного радиуса, точки которой соответствуют , расставленным по следующим правилам:

1) Начало отсчета находится в крайней правой точке окружности;

2) Против часовой стрелки - положительное направление; по часовой – отрицательное;

3) Если в положительном направлении отложить на окружности расстояние \(t\), то мы попадем в точку со значением \(t\);

4) Если в отрицательном направлении отложить на окружности расстояние \(t\), то мы попадем в точку со значением \(–t\).

Почему окружность называется числовой?
Потому что на ней обозначаются числа. В этом окружность похожа на числовую ось – на окружности, как и на оси, для каждого числа есть определенная точка.


Зачем знать, что такое числовая окружность?
С помощью числовой окружности определяют значение синусов, косинусов, тангенсов и котангенсов. Поэтому для знания тригонометрии и сдачи ЕГЭ на 60+ баллов, обязательно нужно понимать, что такое числовая окружность и как на ней расставить точки.


Что в определении означают слова «…единичного радиуса…»?
Это значит, что радиус этой окружности равен \(1\). И если мы построим такую окружность с центром в начале координат, то она будет пересекаться с осями в точках \(1\) и \(-1\).



Ее не обязательно рисовать маленькой, можно изменить «размер» делений по осям, тогда картинка будет крупнее (см. ниже).

Почему радиус именно единица? Так удобнее, ведь в этом случае при вычислении длины окружности с помощью формулы \(l=2πR\) мы получим:

Длина числовой окружности равна \(2π\) или примерно \(6,28\).


А что значит «…точки которой соответствуют действительным числам»?
Как говорили выше, на числовой окружности для любого действительного числа обязательно найдется его «место» - точка, которая соответствует этому числу.


Зачем определять на числовой окружности начало отсчета и направления?
Главная цель числовой окружности - каждому числу однозначно определить свою точку. Но как можно определить, где поставить точку, если неизвестно откуда считать и куда двигаться?

Тут важно не путать начало отсчета на координатной прямой и на числовой окружности – это две разные системы отсчета! А так же не путайте \(1\) на оси \(x\) и \(0\) на окружности – это точки на разных объектах.

Какие точки соответствуют числам \(1\), \(2\) и т.д?

Помните, мы приняли, что у числовой окружности радиус равен \(1\)? Это и будет нашим единичным отрезком (по аналогии с числовой осью), который мы будем откладывать на окружности.

Чтобы отметить на числовой окружности точку соответствующую числу 1, нужно от 0 пройти расстояние равное радиусу в положительном направлении.


Чтобы отметить на окружности точку соответствующую числу \(2\), нужно пройти расстояние равное двум радиусам от начала отсчета, чтобы \(3\) – расстояние равное трем радиусам и т.д.

При взгляде на эту картинку у вас могут возникнуть 2 вопроса:
1. Что будет, когда окружность «закончится» (т.е. мы сделаем полный оборот)?
Ответ: пойдем на второй круг! А когда и второй закончится, пойдем на третий и так далее. Поэтому на окружность можно нанести бесконечное количество чисел.

2. Где будут отрицательные числа?
Ответ: там же! Их можно так же расставить, отсчитывая от нуля нужное количество радиусов, но теперь в отрицательном направлении.

К сожалению, обозначать на числовой окружности целые числа затруднительно. Это связано с тем, что длина числовой окружности будет равна не целому числу: \(2π\). И на самых удобных местах (в точках пересечения с осями) тоже будут не целые числа, а доли

Видеоуроки относятся к наиболее эффективным средствам обучения, особенно таких школьных дисциплин, как математика. Поэтому автор данного материала собрал в единое целое только полезную, важную и грамотную информацию.

Данный урок рассчитан на 11:52 минут. Практически столько же времени требуется учителю на уроке для объяснения нового материала по данной теме. Хотя главным достоинством видеоурока будет тот факт, что обучающиеся будут внимательно слушать то, о чем говорит автор, не отвлекаясь на посторонние темы и разговоры. Ведь если обучающиеся будут слушать не внимательно, то упустят важный момент урока. А если материал будет объяснять учитель сам, то его обучающиеся смогут легко отвлечь от главного своими разговорами на отвлеченные темы. И, конечно, становится понятно, какой способ будет боле рационален.

Начало урока автор посвящает повторению тех функций, с которыми обучающиеся знакомились ранее в курсе алгебры. И первыми предлагается начать изучать - тригонометрические функции. Чтобы их рассматривать и изучать требуется новая математическая модель. И этой моделью становится числовая окружность, которая, как раз, и заявлена в теме урока. Для этого вводится понятие единичной окружности, задается ее определение. Далее на рисунке автор показывает все компоненты такой окружности, и что пригодится обучающимся для дальнейшего обучения. Дугами обозначаются четверти.

Затем автор предлагает рассмотреть числовую окружность. Здесь же он делает замечание, что удобнее использовать единичную окружность. На этой окружности показано, как получается точка M, если t>0, t<0 или t=0. После этого вводится понятие самой числовой окружности.

Далее автор напоминает обучающимся, как находится длина окружности. А затем он выводит длину единичной окружности. Эти теоретические данные предлагается применить на практике. Для этого рассматривается пример, где требуется найти на окружности точку, соответствующую определенным значениям чисел. Решение примера сопровождается иллюстрацией в виде рисунка, а также необходимыми математическими записями.

Согласно условию второго примера, необходимо найти точки на числовой окружности. Здесь также все решение сопровождается комментариями, иллюстрациями и математической записью. Это способствует развитию и совершенствованию математической грамотности обучающихся. Аналогично построен и третий пример.

Далее автор отмечает те числа на окружности, которые встречаются чаще других. Здесь же он предлагает сделать два макета числовой окружности. Когда оба макета готовы, рассматривается следующий, четвертый пример, где требуется найти точку на числовой окружности, соответствующую числу 1. После этого примера формулируется утверждение, согласно которому можно найти точку M, соответствующей числу t.

Далее вводится замечание, согласно которому обучающие узнают, что числу «пи» соответствуют все числа, которые попадают в данную точку при проходе ею всю окружность. Эту информацию подкрепляет пятый пример. Его решение содержит логически правильные рассуждения и рисунки, иллюстрирующие ситуацию.

ТЕКСТОВАЯ РАСШИФРОВКА:

ЧИСЛОВАЯ ОКРУЖНОСТЬ

Ранее мы изучали функции, заданные аналитическими выражениями. И эти функции называли алгебраическими. Но в школьном курсе математики изучаются функции и других классов, не алгебраические. Начнем изучение тригонометрических функций.

Для того, чтобы ввести тригонометрические функции нам понадобится новая математическая модель - числовая окружность. Рассмотрим единичную окружность. Окружность, радиус которой равен масштабному отрезку, без указания конкретных единиц измерения, будем называть единичной. Радиус такой окружности считать равным 1.

Будем пользоваться единичной окружностью, в которой проведены горизонтальный и вертикальный диаметры СА и DВ(цэ а и дэ бэ).(смотри рисунок1).

Дугу АВ будем называть первой четвертью, дугу ВС - второй четвертью, дугу СD - третьей четвертью, а дугу DА - четвертой четвертью.

Рассмотрим числовую окружность. Вообще, любую окружность можно рассматривать как числовую, но удобнее для этой цели пользоваться единичной окружностью.

ОПРЕДЕЛЕНИЕ Дана единичная окружность, на ней отмечена начальная точка А - правый конец горизонтального диаметра. Поставим в соответствие каждому действительному числу t (тэ) точку окружности по следующему правилу:

1) Если t>0(тэ больше нуля), то, двигаясь из точки А в направлении против часовой стрелки (положительное направление обхода окружности), опишем по окружности путь АМ (а эм) длины t. Точка М и будет искомой точкой М(t) (эм от тэ).

2) Если t<0(тэ меньше нуля), то, двигаясь из точки А в направлении по часовой стрелке (отрицательное направление обхода окружности), опишем по окружности путь АМ (а эм) длины |t| (модуль тэ). Точка М и будет искомой точкой М(t) (эм от тэ).

3) Числу t = 0 поставим в соответствие точку А.

Единичную окружность с установленным соответствием (между действительными числами и точками окружности) будем называть числовой окружностью.

Известно, что длина окружности L (эль) вычисляется по формуле L =2πR (эль равно два пи эр), где π≈3,14 , R - радиус окружности. Для единичной окружности R=1см, значит L =2π≈6,28 см (эль равно два пи примерно 6,28).

Рассмотрим примеры.

ПРИМЕР 1.Найти на числовой окружности точку, которая соответствует заданному числу: ,.(пи на два, пи, три пи на два, два пи, одиннадцать пи на два, семь пи, минус пять пи на два)

Решение. Первые шесть чисел положительны, поэтому для отыскания соответствующих им точек окружности нужно пройти по окружности путь заданной длины, двигаясь из точки А в положительном направлении. Длина каждой четверти единичной окружности равна. Значит, АВ =, то есть числу соответствует точка В (смотри рис. 1). АС = , то есть числу соответствует точка С. АD = , то есть числу соответствует точка D. А числу соответствует снова точка А, потому что пройдя по окружности путь длиной мы попали в начальную точку А.

Рассмотрим, где будет находится точка такое Так как мы уже знаем, что длинна окружности, то приведем к виду (четыре пи плюс три пи на два). То есть, двигаясь из точки А в положительном направлении, нужно описать два раза целую окружность (путь длиной 4π) и дополнительно путь длиной, который закончится в точке D.

Что такое? Это 3∙2π + π (три умноженное на два пи плюс пи). Значит, двигаясь из точки А в положительном направлении, нужно описать три раза целую окружность и дополнительно путь длиной π, который закончится в точке С.

Чтобы найти на числовой окружности точку, соответствующую отрицательному числу, нужно из точки А пройти по окружности в отрицательном направлении (по часовой стрелке) путь длиной, а это соответствует 2π + . Этот путь завершится в точке D.

ПРИМЕР 2. Найти на числовой окружности точки, (пи на шесть, пи на четыре, пи на три).

Решение. Разделив дугу АВ пополам, мы получим точку Е, которая соответствует. А разделив дугу АВ на три равные части точками F и О, получим, что точка F соответствует, а точка T соответствует

(смотри рис 2).

ПРИМЕР 3. Найти на числовой окружности точки, (минус тринадцать пи на четыре, девятнадцать пи на шесть).

Решение. Отложив дугу АЕ (а эм) длиной (пи на четыре) от точки А тринадцать раз в отрицательном направлении, получим точку Н (аш) - середину дуги ВС.

Отложив дугу АF длиной (пи на шесть) от точки А девятнадцать раз в положительном направлении, попадем в точку N (эн), которая принадлежит третьей четверти (дуге СD) и СN равно третьей части дуги СD (сэ дэ).

(смотри рис примера 2).

Чаще всего приходится искать на числовой окружности точки, которые соответствуют числам, (пи на шесть, пи на четыре, пи на три, пи на два), а также те, которые кратны им, то есть, (семь пи на шесть, пять пи на четыре, четыре пи на три, одиннадцать пи на два). Поэтому для того, чтобы быстро ориентироваться целесообразно сделать два макета числовой окружности.

На первом макете каждая из четвертей числовой окружности будет разделена на две равные части и около каждой из полученных точек запишем их «имена»:

На втором макете каждая из четвертей разделена на три равные части и около каждой из полученных двенадцати точек то же запишем их «имена»:

Если двигаться по часовой стрелке, то получим для имеющихся на чертежах точек те же «имена», только со значением минус. Для первого макета:

Аналогично, если двигаться по второму макету по часовой стрелке из точки О.

ПРИМЕР 4. Найти на числовой окружности точки, соответствующие числам 1 (один).

Решение. Зная, что π≈3,14 (пи приблизительно равно три целые четырнадцать сотых) , ≈ 1,05(пи на три приблизительно равно одна целая пять сотых), ≈ 0,79(пи на четыре приблизительно равно ноль целых семьдесят девять сотых). Значит, < 1 < (один больше, чем пи на четыре, но меньше, чем пи на три), то есть число 1 находится в первой четверти.

Справедливо следующее утверждение: если точка М числовой окружности соответствуют числу t, то она соответствует и любому числу вида t + 2π k (тэ плюс два пи ка), где ка - любое целое число и k ϵ Z (ка принадлежит зэт).

Используя это утверждение, можно сделать вывод, что точке соответствуют все точки вида t =+ 2πk (тэ равно пи на три плюс два пи ка), где kϵZ(ка принадлежит зэт), а точке (пять пи на четыре) - точки вида t = + 2πk (тэ равно пять пи на четыре плюс два пи ка), где kϵZ(ка принадлежит зэт) и так далее.

ПРИМЕР 5.Найти на числовой окружности точку: а) ; б) .

Решение. а) Имеем: = =(6 +) ∙ π = 6π + = + 3∙ 2π.(двадцать пи на три равно двадцать на три пи равно шесть плюс две трети, умноженное на пи равно шесть пи плюс два пи на три равно два пи на три плюс три умноженное на два пи).

Это значит, что числу соответствует на числовой окружности та же точка, что и числу (это вторая четверть) (смотри второй макет на рис 4).

б) Имеем: = - (8 +) ∙ π = + 2π ∙ (- 4).(минус тридцать пять пи на четыре равно минус восемь плюс три четвертые, умноженное на пи равно минус три пи на четыре плюс два пи, умноженное на минус четыре). То есть числу соответствует на числовой окружности та же точка, что и числу

На этом уроке мы вспомним определение числовой прямой и дадим новое определение числовой окружности. Также подробно рассмотрим важное свойство числовой окружности и важные точки на окружности. Дадим определение прямой и обратной задачи для числовой окружности и решим несколько примеров подобных задач.

Тема: Тригонометрические функции

Урок: Числовая окружность

Для любой функции независимый аргумент откладывается либо на числовой прямой , либо на окружности. Охарактеризуем и числовую прямую, и числовую окружность .

Прямая становится числовой (координатной) прямой, если отмечено начало координат, выбраны направление и масштаб (рис. 1).

Числовая прямая устанавливает взаимно-однозначное соответствие между всеми точками прямой и всеми действительными числами.

Например, берем число откладываем на координатной оси, получаем точку Возьмем число откладываем на оси, получаем точку (рис. 2).

И наоборот, если мы взяли любую точку на координатной прямой, то найдется единственное соответствующее ей действительное число (рис. 2).

К такому соответствию люди пришли не сразу. Чтобы понять это, вспомним основные числовые множества.

Сначала ввели множество натуральных чисел

Затем множество целых чисел

Множество рациональных чисел

Предполагалось, что этих множеств будет достаточно, и существует взаимно-однозначное соответствие между всеми рациональными числами и точками прямой. Но оказалось, что на числовой прямой есть бесчисленное множество точек, которые нельзя описать числами вида

Пример - гипотенуза прямоугольного треугольника с катетами 1 и 1. Она равна (рис. 3).

Найдется ли среди множества рациональных чисел число, в точности равное Нет, не найдется. Докажем этот факт.

Докажем методом от противного. Предположим, что существует дробь, равная т.е.

Тогда Возведем обе части в квадрат, Очевидно, что правая часть равенства делится на 2, . Значит и Тогда Но тогда и А значит, Тогда получается, что дробь сократимая. Это противоречит условию, значит

Число иррациональное. Множество рациональных и иррациональных чисел образуют множество действительных чисел Если мы возьмем любую точку на прямой, ей будет соответствовать какое-либо действительное число. И если мы возьмем любое действительное число, ему будет соответствовать единственная точка на координатной прямой.

Уточним, что такое числовая окружность и каковы взаимоотношения между множеством точек окружности и множеством действительных чисел.

Начало отсчета - точка A . Направление отсчета - против часовой стрелки - положительное, по часовой стрелке - отрицательное. Масштаб - длина окружности (рис. 4).

Вводя эти три положения, мы имеем числовую окружность . Укажем, каким образом каждому числу поставить в соответствие точку на окружности и наоборот.

Задав число получаем точку на окружности

Каждому действительному числу соответствует точка на окружности. А наоборот?

Точка соответствует числу . А если взять числа Все эти числа своим образом на окружности имеют только одну точку

Например, соответствует точке B (рис. 4).

Возьмем все числа Все они соответствуют точке B. Нет взаимно-однозначного соответствия между всеми действительными числами и точками окружности.

Если есть фиксированное число то ему соответствует только одна точка окружности

Если есть точка окружности, то ей соответствует множество чисел

В отличии от прямой, координатная окружность не обладает взаимно-однозначным соответствием между точками и числами. Каждому числу соответствует только одна точка, но каждой точке соответствует бесчисленное множество чисел, и мы можем их записать.

Рассмотрим основные точки на окружности.

Задано число Найти, какой точке на окружности оно соответствует.

Разделив дугу пополам, получаем точку (рис. 5).

Обратная задача - дана точка середина дуги Найти все действительные числа, которые ей соответствуют.

Отметим на числовой окружности все дуги, кратные (рис. 6).

Важны также дуги, кратные

Дано число Нужно найти соответствующую точку.

Обратная задача - дана точка, нужно найти каким числам она соответствует.

Мы рассмотрели две стандартные задачи на двух важнейших точках.

a) Найти на числовой окружности точку с координатой

Откладываем от точки A это два целых оборота и еще половина, и Получаем точку M - это середина третьей четверти (рис. 8).

Ответ. Точка M - середина третьей четверти.

b) Найти на числовой окружности точку с координатой

Откладываем от точки A полный оборот и еще получаем точку N (рис. 9).

Ответ: Точка N находится в первой четверти.

Мы рассмотрели числовую прямую и числовую окружность, вспомнили их особенности. Особенностью числовой прямой является взаимно-однозначное соответствие между точками этой прямой и множеством действительных чисел. Такого взаимно-однозначного соответствия нет на окружности. Каждому действительному числу на окружности соответствует единственная точка, но каждой точке числовой окружности соответствует бесчисленное множество действительных чисел.

На следующем уроке мы рассмотрим числовую окружность в координатной плоскости.

Список литературы по теме "Числовая окружность", "Точка на окружности"

1. Алгебра и начала анализа, 10 класс (в двух частях). Учебник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2009.

2. Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

3. Виленкин Н.Я., Ивашев-Мусатов О.С., Шварцбурд С.И. Алгебра и математический анализ для 10 класса (учебное пособие для учащихся школ и классов с углубленным изучением математики).-М.: Просвещение, 1996.

4. Галицкий М.Л., Мошкович М.М., Шварцбурд С.И. Углубленное изучение алгебры и математического анализа.-М.: Просвещение, 1997.

5. Сборник задач по математике для поступающих во ВТУЗы (под ред. М.И.Сканави).-М.:Высшая школа, 1992.

6. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебраический тренажер.-К.: А.С.К., 1997.

7. Саакян С.М., Гольдман А.М., Денисов Д.В. Задачи по алгебре и началам анализа (пособие для учащихся 10-11 классов общеобразов. учреждений).-М.: Просвещение, 2003.

8. Карп А.П. Сборник задач по алгебре и началам анализа: учеб. пособие для 10-11 кл. с углубл. изуч. математики.-М.: Просвещение, 2006.

Домашнее задание

Алгебра и начала анализа, 10 класс (в двух частях). Задачник для общеобразовательных учреждений (профильный уровень) под ред. А. Г. Мордковича. -М.: Мнемозина, 2007.

№№ 11.6 - 11.12, 11.15 - 11.17.

Дополнительные веб-ресурсы

3. Образовательный портал для подготовки к экзаменам ().

Название предмета Алгебра и начала математического анализа

Класс 10

УМК Алгебра и начала математического анализа, 10-11 классы. В 2 . Ч.1. Учебник для общеобразовательных учреждений(базовый уровень) /А.Г. Мордкович. – 10-еизд., стер.- М.: Мнемозина,2012. Ч.2. Задачник для общеобразовательных учреждений(базовый уровень) / [ А.Г. Мордкович и др. ]; под ред. А.Г. Мордковича. – 10-еизд., стер.- М.: Мнемозина,2012.

Уровень обучения. Базовый

Тема урока Числовая окружность (2 часа)

Урок №1

Цель : ввести понятие числовой окружности как модели криволинейной системы координат.

Задачи : формировать умение использовать числовую окружность при решении задач.

Планируемые результаты:

Ход урока

    Организационный момент.

2. Проверка домашнего задания вызвавшие затруднения у учащихся

II. Устная работа.

1. Поставьте каждому промежутку на числовой прямой в соответствие неравенство и аналитическую запись интервала. Данные занесите в табличку.

А (–  ; –5] Д (–5; 5)

Б [–5; 5] Е (–  ; –5)

В [–5; +  ) Ж [–5; 5)

Г (–5; 5] З (–5; +  )

1 –5 < х < 5 5 –5  х  5

2 х  –5 6 х  –5

3 –5 < х  5 7 5  х < 5

4 х < –5 8 х > –5

а

1. В отличие от изученной числовой прямой числовая окружность является более сложной моделью. Понятие дуги, которое лежит в её основе, не является надежно отработанным в геометрии.

2 . Работа с учебником . Рассматриваем практический пример со с. 23–24 учебника (беговая дорожка стадиона). Можно попросить учащихся привести похожие примеры (движение спутника по орбите, вращение шестерни и т. п.).

3. Обосновываем удобство использования в качестве числовой именно единичной окружности.

4. Работа с учебником. Рассматриваем примеры со с. 25–31 учебника. Авторы подчеркивают, что для успешного овладения моделью числовой окружности и в учебнике, и в задачнике предусмотрена система специальных «дидактических игр». Их шесть, на этом уроке используем первые четыре.

(Мордкович А. Г. М79 Алгебра и начала математического анализа. 10- 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. - М. : Мнемози- на, 2010. - 202 с. : ил.)

1-я «игра» – вычисление длины дуги единичной окружности. Учащиеся должны привыкнуть к тому, что длина всей окружности равна 2 , половины окружности – , четверти окружности – и т. д.

2-я «игра» – отыскание на числовой окружности точек, соответствующих заданным числам, выраженным в долях числа например, точек и т. д. («хорошие» числа и точки).

3-я «игра» – отыскание на числовой окружности точек, соответствующих заданным числам, выраженным не в долях числа  например, точек М (1), М (–5) и т. д. («плохие» числа и точки).

4-я «игра» – запись чисел, соответствующих данной «хорошей» точке числовой окружности, например, «хорошей» является середина первой четверти, соответствующие ей числа имеют вид

Динамическая пауза

Упражнения, решаемые на этом занятии, соответствуют четырем обозначенным дидактическим играм. Учащиеся используют макет числовой окружности с диаметрами АС (горизонтальным) и BD (вертикальным).

1. № 4.1, № 4.3.

Решение:

4.3.

2. № 4.5 (а; б) – 4.11 (а; б).

3. № 4.12.

4. № 4.13 (а; б), № 4.14.

Решение:

4.13.

V. Проверочная работа.

Вариант 1

Вариант 2

1. Обозначьте на числовой окружности точку, которая соответствует данному числу:

2. Найдите все числа, которым соответствуют отмеченные на числовой окружности точки.

VI. Итоги урока.

Вопросы учащимся:

Дайте определение числовой окружности.

Чему равна длина единичной окружности? Длины половины единичной окружности? Её четверти?

Каким способом можно отыскать на числовой окружности точку, соответствующую числу Числу 5?

Домашнее задание:, стр. 23. № 4.2, № 4.4, № 4.5 (в; г) – № 4.11 (в; г), № 4.13 (в; г), № 4.15.

Урок № 2

Цели : закрепить понятие числовой окружности как модели криволинейной системы координат.

Задачи : продолжить формирование умения находить на числовой окружности точки, соответствующие заданным «хорошим» и «плохим» числам; записывать число, соответствующее точке на числовой окружности; формировать умение составлять аналитическую запись дуги числовой окружности в виде двойного неравенства.

Развивать вычислительные навыки, правильную математическую речь, логическое мышление учащихся.

Прививать самостоятельность, внимание и аккуратность. Воспитывать ответственное отношение к обучению.

Планируемые результаты:

Знать, понимать: - числовая окружность.

Уметь: - находить на окружности точки по заданным координатам; - находить координаты точки, расположенной на числовой окружности.

Уметь применять изученный теоретический материал при выполнении письменной работы.

Техническое обеспечение урока Компьютер, экран, проектор, учебник, задачник.

Дополнительное методическое и дидактическое обеспечение урока: Мордкович А. Г. М79 Алгебра и начала математического анализа. 10- 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. - М. : Мнемози- на, 2010. - 202 с. : ил

Ход урока

    Организационный момент.

Психологический настрой учащихся.

Проверка домашнего задания № 4.2, № 4.4, № 4.5 (в; г) – № 4.11 (в; г), № 4.13 (в; г),

4.15. Разобрать решение заданий вызвавших затруднение.

    Устная работа.

(на слайде)

1. Сопоставьте точки на числовой окружности и заданные числа:

а)

б)

в)

г)

д)

е)

ж)

з)

2. Найдите на числовой окружности точки.

2; 4; –8; 13  .

III. Объяснение нового материала.

Как уже отмечали, учащиеся осваивают систему шести дидактических «игр», обеспечивающих умение решать задачи четырех основных типов, связанных с числовой окружностью (от числа к точке; от точки к числу; от дуги к двойному неравенству; от двойного неравенства к дуге).

(Мордкович А. Г. М79 Алгебра и начала математического анализа. 10- 11 классы (базовый уровень) : методическое пособие для учителя / А. Г. Мордкович, П. В. Семенов. - М. : Мнемозина, 2010. - 202 с. : ил.)

На этом занятии используем последние две игры:

5-я «игра» – составление аналитических записей (двойных неравенств) для дуг числовой окружности. Например, если дана дуга, соединяющая середину первой четверти (начало дуги) и нижнюю точку из тех двух, что делят вторую четверть на три равных части (конец дуги), то соответствующая аналитическая запись имеет вид:

Если у той же дуги поменять местами начало и конец, то соответствующая аналитическая запись дуги будет иметь вид:

Авторы учебника отмечают, что термины «ядро аналитической записи дуги», «аналитическая запись дуги» не являются общепризнанными, они введены из чисто методических соображений, и использовать их или нет – дело учителя.

6-я «игра» – от данной аналитической записи дуги (двойного неравенства) перейти к её геометрическому изображению.

Объяснение следует проводить с помощью приема аналогии. Можно использовать подвижную модель числовой прямой, которую можно «свернуть» в числовую окружность.

Работа с учебником .

Рассматриваем пример 8 со с. 33 учебника.

Динамическая пауза

IV. Формирование умений и навыков.

При выполнении заданий учащиеся должны следить, чтобы при аналитической записи дуги левая часть двойного неравенства была меньше правой части. Для этого необходимо при записи двигаться в положительном направлении, то есть против часовой стрелки.

1-я группа . Упражнения на отыскание на числовой окружности «плохих» точек.

4.16, № 4.17 (а; б).

2-я группа . Упражнения на аналитическую запись дуги и построение дуги по её аналитической записи.

4.18 (а; б), № 4.19 (а; б), № 4.20 (а; б).

V. Самостоятельная работа.

Вариант 1

3. По аналитической модели запишите обозначение числовой дуги и постройте её геометрическую модель.

Вариант 2

1. По геометрической модели дуги числовой окружности запишите аналитическую модель в виде двойного неравенства.

2. По заданному обозначению дуги числовой окружности укажите её геометрическую и аналитическую модели.

3. По аналитической модели запишите обозначение дуги числовой окружности и постройте её геометрическую модель.

VI. Итоги урока.

Вопросы учащимся:

Какими способами можно записать аналитически дугу числовой окружности?

Что называется ядром аналитической записи дуги?

Каким условиям должны отвечать числа, стоящие слева и справа в записи двойного неравенства?

Домашнее задание:

1. , стр. 23. № 4.17 (в; г), № 4.18 (в; г), № 4.19 (в; г), № 4.20 (в; г).

2. По геометрической модели дуги числовой окружности запишите её аналитическую модель в виде двойного неравенства.

3. По заданному обозначению дуги числовой окружности укажите её геометрическую и аналитическую модели.