Опыты птолемея по преломлению света. Преломление света (7 класс) — Гипермаркет знаний Маскировка и демаскировка

Выпуск 3

В видеоуроке физики от Академии занимательных наук профессор Даниил Эдисонович продолжает начатый в предыдущей серии передачи разговор о свете. Что такое отражение света телезрители уже знают, а вот что такое преломление света? Именно преломлением света объясняются некоторые странные оптические явления, которые мы можем наблюдать в нашей повседневной жизни.

Явление преломления света

Почему ноги стоящих в воде людей кажутся короче, чем на самом деле, а если посмотреть на дно реки, то оно кажется ближе? Всё дело в явлении преломления света. Свет всегда старается двигаться по прямой линии, кратчайшим путём. Но попадая из одной физической среды в другую часть солнечных лучей меняет направление. В этом случае мы имеем дело с явлением преломления света. Именно поэтому ложка в стакане с чаем кажется сломанной — свет от части ложки, которая в чае, достигает наших глаз под другим углом, чем свет от части ложки, которая находится над поверхностью жидкости. Преломление света в данном случае происходит на границе воздуха с водой. При отражении луч света движется самым коротким путём, а при преломлении — самым быстрым. Используя законы отражения и преломления света, люди создали множество вещей, без которых сегодня наша жизнь немыслима. Телескопы, перископы, микроскопы, увеличительные стёкла, всё это было бы невозможно создать без знания законов преломления и отражения света. Увеличительное стекло увеличивает потому, что пройдя через него, лучи света попадают в глаз под углом большим, чем лучи, отражённые от самого предмета. Для этого предмет нужно расположить между лупой и её оптическим фокусом. Оптический фокус; это точка, в которой пересекаются (фокусируются) первоначально параллельные лучи после прохождения через собирающую систему (либо где пересекаются их продолжения, если система рассеивающая). У линзы (например, линзы очков) есть две стороны, поэтому луч света преломляется дважды — входя и выходя из линзы. Поверхность линзы может быть выгнутой, вогнутой или плоской, что определяет, каким именно образом в ней произойдёт явление преломления света. Если у линзы обе стороны выпуклые — это собирательная линза. Преломляясь в такой линзе, лучи света собираются в одной точке. Она называется главным фокусом линзы. Линза с вогнутыми сторонами называется рассеивающей. На первый взгляд она лишена фокуса, ведь лучи, проходя через неё, рассеиваются, расходятся в стороны. Но если мы перенаправим эти лучи обратно, то они, вновь пройдя через линзу, соберутся в точке, которая и будет фокусом этой линзы. Есть линза и в глазу человека, она называется хрусталиком. Его можно сравнить с кинопроектором, который проецирует картинку на экран — заднюю стенку глаза (сетчатку). Вот и получается, что озеро — это гигантская линза, вызывающая явление преломления света. Потому и кажутся короткими ноги у стоящих в нём рыбаков. Радуга тоже появляется на небе из-за линз. В их роли выступают мельчайшие капельки воды или частицы снега. Радуга возникает из-за того, что солнечный свет преломляется и отражается капельками воды (дождя или тумана), парящими в атмосфере. Эти капельки по-разному отклоняют свет разных цветов. В результате белый свет разлагается в спектр (происходит дисперсия света). Наблюдатель, который стоит спиной к источнику света, видит разноцветное свечение, которое исходит из пространства по окружностям (дугам).

Процессы, которые связаны со светом, являются важной составляющей физики и окружают нас в нашей обыденной жизни повсеместно. Самые важные в данной ситуации являются законы отражения и преломления света, на которых зиждется современная оптика. Преломление света является важной составляющей частью современной науки.

Эффект искажения

Эта статья расскажет вам, что собой представляет явление преломления света, а также как выглядит закон преломления и что из него вытекает.

Основы физического явления

При падении луча на поверхность, которая разделяется двумя прозрачными веществами, имеющими разную оптическую плотность (к примеру, разные стекла или в воде), часть лучей будет отражена, а часть – проникнет во вторую структуру (например, пойдет распространяться в воде или стекле). При переходе из одной среды в другую для луча характерно изменение своего направления. Это и есть явление преломления света.
Особенно хорошо отражение и преломление света видно в воде.

Эффект искажения в воде

Смотря на вещи, находящиеся в воде, они кажутся искаженными. Особенно это сильно заметно на границе между воздухом и водой. Визуально кажется, что подводные предметы слегка отклонены. В описываемом физическом явлении как раз и кроется причина того, что в воде все объекты кажутся искаженными. При попадании лучей на стекло, данный эффект менее заметен.
Преломление света представляет собой физическое явление, которое характеризуется изменением направления движения солнечного луча в момент перемещения из одной среды (структуры) в другую.
Для улучшения понимания данного процесса, рассмотрим пример попадания луча из воздуха в воду (аналогично для стекла). При проведении перпендикуляра вдоль границы раздела можно измерить угол преломления и возвращения светового луча. Данный показатель (угол преломления) будет изменяться при проникновении потока в воду (внутрь стекла).
Обратите внимание! Под данным параметром понимается угол, который образует перпендикуляр, проведенный к разделу двух веществ при проникновении луча из первой структуры во вторую.

Прохождение луча

Этот же показатель характерен и для других сред. Установлено, что данный показатель зависит от плотности вещества. Если падение луча происходит из менее плотной в более плотную структуру, то угол создаваемого искажения будет больше. А если наоборот – то меньше.
При этом изменение наклона падения также скажется и на данном показателе. Но отношение между ними не остается постоянным. В то же время, отношение их синусов останется постоянной величиной, которую отображает следующая формула: sinα / sinγ = n, где:

  • n – постоянная величина, которая описана для каждого конкретного вещества (воздуха, стекла, воды и т.д.). Поэтому, какова будет данная величина можно определить по специальным таблицам;
  • α – угол падения;
  • γ – угол преломления.

Для определения этого физического явления и был создан закон преломления.

Физический закон

Закон преломления световых потоков позволяет определить характеристики прозрачных веществ. Сам закон состоит из двух положений:

  • первая часть. Луч (падающий, измененный) и перпендикуляр, который был восстановлен в точке падения на границе, например, воздуха и воды (стекла и т.д.), будут располагаться в одной плоскости;
  • вторая часть. Показатель соотношения синуса угла падения к синусу этого же угла, образовавшегося при переходе границы, будет величиной постоянной.

Описание закона

При этом в момент выхода луча из второй структуры в первую (например, при прохождении светового потока из воздуха, через стекло и обратно в воздух), также будет возникать эффект искажения.

Важный параметр для разных объектов

Основной показатель в данной ситуации — это соотношение синуса угла падения к аналогичному параметру, но для искажения. Как следует из закона, описанного выше, данный показатель являет собой постоянную величину.
При этом при изменении значения наклона падения, такая же ситуация будет характерна и для аналогичного показателя. Данный параметр имеет большое значение, поскольку является неотъемлемой характеристикой прозрачных веществ.

Показатели для разных объектов

Благодаря этому параметру можно довольно эффективно различать виды стекол, а также разнообразные драгоценные камни. Также он важен для определения скорости перемещения света в различных средах.

Обратите внимание! Наивысшая скорость светового потока – в вакууме.

При переходе из одного вещества в другие, его скорость будет уменьшаться. К примеру, у алмаза, который обладает самым большим показателем преломляемости, скорость распространения фотонов будет в 2,42 раза выше, чем у воздуха. В воде же они будут распространяться медленнее в 1,33 раза. Для разных видов стекол данный параметр колеблется в диапазоне от 1,4 до 2,2.

Обратите внимание! Некоторые стекла имеют показатель преломляемости 2,2, что очень близко к алмазу (2,4). Поэтому не всегда получится отличить стекляшку от реального алмаза.

Оптическая плотность веществ

Свет может проникать через разные вещества, которые характеризуются различными показателями оптической плотности. Как мы уже говорили ранее, используя данный закон можно определить характеристику плотности среды (структуры). Чем более плотной она будет, тем с меньшей скоростью в ней будет распространяться свет. Например, стекло или вода будут более оптически плотными, чем воздух.
Кроме того, что данный параметр является постоянной величиной, он еще и отражает отношение скорости света в двух веществах. Физический смысл можно отобразить в виде следующей формулы:

Данный показатель говорит, каким образом изменяется скорость распространения фотонов при переходе из одного вещества в другое.

Еще один важный показатель

При перемещении светового потока через прозрачные объекты возможна его поляризация. Она наблюдается при прохождении светового потока от диэлектрических изотропных сред. Поляризация возникает при прохождении фотонов через стекло.

Эффект поляризации

Частичная поляризация наблюдается, когда угол падения светового потока на границе двух диэлектриков будет отличаться от нуля. Степень поляризации зависит от того, каковы были углы падения (закон Брюстера).

Полноценное внутреннее отражение

Завершая наш небольшой экскурс, еще необходимо рассмотреть такой эффект, как полноценное внутреннее отражение.

Явление полноценного отображения

Для появления данного эффекта необходимо увеличение угла падения светового потока в момент его перехода из более плотного в менее плотную среду в границе раздела между веществами. В ситуации, когда данный параметр будет превосходить определенное предельное значение, тогда фотоны, падающие на границу этого раздела будут полностью отражаться. Собственно это и будет наше искомое явление. Без него невозможно было сделать волоконную оптику.

Заключение

Практическое применение особенностей поведения светового потока дали очень многое, создав разнообразные технические приспособления для улучшения нашей жизни. При этом свет открыл перед человечеством далеко не все свои возможности и его практический потенциал еще полностью не реализован.


Как сделать бумажный светильник своими руками
Как проверить работоспособность светодиодной ленты

1. Проводим опыты по преломлению света

Проведем такой эксперимент. Направим на поверхность воды в ши­роком сосуде узкий пучок света под некоторым углом к поверхности. Мы заметим, что в точках падения лучи не только отражаются от поверхности воды, но и частично проходят в воду, изменяя при этом свое направление (рис. 3.33).

  • Изменение направления распространения света в случае его прохождения че­рез границу раздела двух сред называют преломлением света .

Первое упоминание о преломлении света можно найти в работах древ­негреческого философа Аристотеля, который задавался вопросом: почему палка в воде кажется сломанной? А в одном из древнегреческих трактатов описан такой опыт: «Нужно встать так, чтобы плоское кольцо, положенное на дно сосуда, спряталось за его краем. Потом, не изменяя положения глаз, налить в сосуд воду.

Рис. 3.33 Схема опыта по демонстрации преломления света. Переходя из воздуха в воду, луч све­та изменяет свое направление, смещаясь к перпендикуляру, восставленному в точке падения луча

2. Существуют такие соотношения между уг­лом падения и углом преломления:

а) в случае увеличения угла падения увели­чивается и угол преломления;

б) если луч света переходит из среды с мень­шей оптической плотностью в среду с большей оптической плотностью, то угол преломления будет меньше, чем угол падения;

в) если луч света переходит из среды с большей оптической плотностью в сре­ду с меньшей оптической плотностью, то угол преломления будет большим, чем угол падения.

(Следует отметить, что в старших классах, после изучения курса тригонометрии, вы глуб­же познакомитесь с преломлением света и узна­ете о нем на уровне законов.)

4. Объясняем преломлением света некоторые оптические явления

Когда мы, стоя на берегу водоема, стара­емся на глаз определить его глубину, она всег­да кажется меньшей, чем есть на самом деле. Это явление объясняется преломлением света (рис. 3.37).

Рис. 3. 39. Оптические устройства, работа которых базируется на явлении преломления света

  • Контрольны вопросы

1. Какое явление мы наблюдаем, когда свет проходит через границу раздела двух сред?

Л. И. Мандельштам изучал распространение электромагнитных волн, прежде всего - видимого света. Он обнаружил целый ряд эф­фектов, некоторые ныне носят его имя (комбинационное рассеяние света, эффект Мандельштама- Бриллюена и т. п.).

Опыты Птолемея по преломлению света

Греческий астроном Клавдий Птолемей (около 130 г. н. э.) - автор замечательной книги, которая в течение почти 15 столетий служила основным учебником по астрономии. Однако кроме астрономического учебника, Птолемей написал еще книгу «Оптика», в которой изложил теорию зрения, теорию плоских и сферических зеркал и описал исследование явления преломления света.
С явлением преломления света Птолемей столкнулся, наблюдая звезды. Он заметил, что луч света, переходя из одной среды в другую, «ломается». Поэтому звездный луч, проходя через земную атмосферу, доходит до поверхности Земли не по прямой, а по ломаной линии, то есть происходит рефракция (преломление света). Искривление хода луча происходит из-за того, что плотность воздуха меняется с высотой.
Чтобы изучить закон преломления, Птолемей провел следующий эксперимент. Он взял круг и укрепил на нем две подвижные линейки l 1 и l 2 (см. рисунок). Линейки могли вращаться около центра круга на общей оси О.
Птолемей погружал этот круг в воду до диаметра АВ и, поворачивая нижнюю линейку, добивался того, чтобы линейки лежали для глаза на одной прямой (если смотреть вдоль верхней линейки). После этого он вынимал круг из воды и сравнивал углы падения α и преломления β. Он измерял углы с точностью до 0,5°. Числа, полученные Птолемеем, представлены в таблице.

Птолемей не нашел «формулы» взаимосвязи для этих двух рядов чисел. Однако если определить синусы этих углов, то окажется, что отношение синусов выражается практически одним и тем же числом даже при таком грубом измерении углов, к которому прибегал Птолемей.

III. Из-за рефракции света в спокойной атмосфере кажущееся положение звезд на небосклоне относительно горизонта...

Вариант 1. Оборудование: прибор для изучения законов геометрической оптики, выпрямитель ВС-24 или ВС 4-12, плоское зеркало из деталей прибора.

При подготовке прибора по геометрической оптике к работе регулируют освещение экрана. Для этого ослабляют шаровой шарнир и поворачивают или смещают осветитель до тех пор, пока средняя полоска света не пройдет через весь экран (по его диаметру). В этом положении осветитель закрепляют. Если же при этом полоска света будет расплывчатой, не резкой, то, отпустив винт, фиксирующий электропатрон в осветителе, вращают, опускают или поднимают электропатрон до получения четкой полоски света на экране. Если боковые полоски света не доходят до края экрана, то следует изменить наклон осветителя. После наладки все винты надежно закрепляют.

Установку собирают по рисунку 278. С помощью прижима ус­танавливают плоское зеркало из набора оптических деталей так, чтобы его отражающая поверхность совпадала с горизонтальной осью. Оставляют лишь один средний луч. Изменяют угол паде­ния от 0 до 90°, отмечают угол отражения, сравнивают эти углы, делают вывод.

Повторяют опыт, демонстрируя свойства обратимости световых пучков, для чего переводят осветитель из одной части диска в дру­гую. (При демонстрации опытов по геометрической оптике поме­щение должно быть затемнено.)

Рис. 278 Рис. 280

Опыт 2. Преломления света

Вариант 1. Оборудование:

На экране устанавливают прозрачный полуцилиндр мато­вой стороной к экрану и плоским срезом вверх так, чтобы он со­впадал с горизонтальной осью. Центр полуцилиндра совмещают с центром экрана с помощью риски на матовой поверхности полу­цилиндра (рис. 280).

При демонстрации опыта пользуются средним лучом. Направ­ляют луч в центр полуцилиндра перпендикулярно плоскости (луч проходит без изменения направления). Отклоняют падающий луч от перпендикуляра и замечают, что преломленный луч выходит из полуцилиндра под другим углом. Сравнивают углы падения и пре­ломления, делают вывод.

Повторяют опыт при другом угле паде­ния. (Во время опыта следует обратить внимание на раздвоение пучка света на границе раздела двух сред.)

Опыт 3. Явление полного отражения света

Вариант 1. Оборудование: прибор для изучения законов геометрической оптики, выпрямитель ВС-24 или ВС 4-12, полуцилиндр из набора оптических деталей.

Обратив внимание на соотношение углов падения и преломления в предыдущем опыте (рис.280), изменяют положение полуцилиндра. Его выпуклой стороной устанавливают к осветите­лю (плоский срез совпадает с горизонтальной осью). Изменяют углы падения, сравнивают с углами преломления, делают вывод.

Сравнивают соотношение углов падения и преломления в зависимости от соотношения оптической плотности сред (результаты данного и предыдущего опытов). Делают вывод.

Убеждаются, что при увеличении угла падения яр­кость отраженного пучка возрастает, а преломленного - уменьша­ется. Увеличивают угол падения до тех пор, пока преломленный луч не исчезнет. При дальнейшем увеличении угла падения будет на­блюдаться только отраженный луч. Наблюдают явление полного отра­жения света.

Вопрос. Чему равен предельный угол полного отражения? (Ответ дайте с одной значащей цифрой.)

Вариант 2. Оборудование: проекционный аппарат, аквариум.

Установку собирают по рисун­ку 281. В стеклянную ванну (аквариум) наливают слой воды толщиной 7-8 см и подкрашивают ее хвойным концентратом. Перед конденсором проекционного ап­парата устанавливают горизонтальную щель, а на оправу объек­тива надевают плоское зеркало. Направляют пучок света на бо­ковую стенку стеклянной ванны. Наблюдают преломление пучка света в воде, полное отражение от поверхности воды и преломление при выходе пучка из ванны. Изменяя угол падения, можно наблюдать многократное полное отражение пучка света от по­верхности воды и дна ванны.