Решение задач с помощью теоремы менелая. Теорема менелая Теорема менелая доказательство отношение площадей

ТЕОРЕМЫ ЧЕВЫ И МЕНЕЛАЯ

Теорема Чевы

Большинство замечательных точек треугольника могут быть по­лучены при помощи следующей процедуры. Пусть имеется некоторое правило, согласно которому мы сможем выбрать определенную точку A 1 , на стороне BC (или её про­должении) треугольника ABC (например, выберем середину этой стороны). Затем построим аналогичные точки B 1 , C 1 на двух других сторонах треугольника (в нашем примере еще две середи­ны сторон). Если правило выбора удачное, то прямые AA 1 , BB 1 , CC 1 пересекутся в некоторой точке Z (выбор середин сторон в этом смысле, конечно, удачный, так как медианы треугольника пересекаются в одной точке).

Хотелось бы иметь какой-нибудь общий метод, позво­ляющий по положению точек на сторонах треугольника определять, пересекается ли соответствующая тройка прямых в одной точке или нет.

Универсальное условие, «закрывшее» эту проблему, нашёл в 1678 г. итальянский инженер Джованни Чева .

Определение. Отрезки, соеди­няющие вершины треугольника с точками на противолежащих сторонах (или их продолжениях), называют чевианами, если они пересекаются в одной точке.

Возможны два варианта расположения чевиан. В одном варианте точка


пересечения – внутренняя, а концы чевиан лежат на сторонах треугольника. Во втором варианте точка пересечения внешняя, конец одного чевиана лежит на стороне, а у двух других чевиан концы лежат на продолжениях сторон (смотри чертежи).

Теорема 3. (Прямая теорема Чевы) В произвольном треугольнике АВС на сторонах ВС, СА, АВ или их продолжениях взяты соответственно точки А 1 , В 1 , С 1 , такие, что прямые АА 1 , ВВ 1 , СС 1 пересекаются в некоторой общей точке, тогда

.

Доказательство: известно несколько оригинальных доказательств теоремы Чевы, мы рассмотрим доказательство, основанное на двукратном применении теоремы Менелая. Запишем соотношение теоремы Менелая первый раз для треугольника ABB 1 и секущей CC 1 (точку пересечения чевиан обозначим Z ):

,

а второй раз для треугольника B 1 BC и секущей AA 1 :

.

Перемножив два этих отношения, проведя необходимые сокращения получим соотношение, содержащееся в утверждении теоремы.

Теорема 4. (Обратная теорема Чевы) . Если для выбранных на сторонах треугольника ABC или их продолжениях точек A 1 , В 1 и C 1 выполняется условие Чевы:

,

то прямые AA 1 , BB 1 и CC 1 пересекаются в одной точке .

Доказательство этой теоремы проводится методом от противного, также, как доказательство теоремы Менелая.

Рассмотрим примеры применения прямой и обратной теорем Чевы.

Пример 3. Докажите, что медианы треугольника пересекаются в одной точке.

Решение. Рассмотрим соотношение

для вершин треугольника и середин его сторон. Очевидно, что в каждой дроби в числителе и знаменателе стоят равные отрезки, поэтому все эти дроби равны единице. Следовательно, выполнено соотношение Чевы, поэтому, по обратной теореме, медианы пересекаются в одной точке.

Теорема (теорема Чевы) . Пусть точки лежат на сторонах и треугольника соответственно. Пусть отрезки и пересекаются в одной точке. Тогда

(обходим треугольник по часовой стрелке).

Доказательство. Обозначим через точку пересечения отрезков и . Опустим из точек и перпендикуляры на прямую до пересечения с ней в точках и соответственно (см. рисунок).


Поскольку треугольники и имеют общую сторону , то их площади относятся как высоты, проведенные на эту сторону, т.е. и :

Последнее равенство справедливо, так как прямоугольные треугольники и подобны по острому углу.

Аналогично получаем

и

Перемножим эти три равенства:

что и требовалось доказать.

Про медианы:

1. Разместим в вершинах треугольника ABC единичные массы.
2. Центр масс точек A и B находится посередине AB. Центр масс всей системы должен находиться на медиане к стороне AB, так как центр масс треугольника ABC - это центр масса центра масс точек A и B, и точки C.
(запутанно получилось)
3. Аналогично - ЦМ должен лежать на медиане к сторонам AC и BC
4. Так как ЦМ - единственная точка, то, следовательно все эти три медианы должны пересекаться в ней.

Кстати, сразу же следует, что пересечением они делятся в отношении 2:1. Так как масса центра масс точек A и B равна 2, а масса точки C равна 1, следовательно, общий центр масс согласно теореме о пропорции будет делить медиану в отношении 2/1.

Спасибо большое, доступно изложено, думаю, будет не лишним представить док-во и при помощи методов геометрии масс, например:
Прямые AA1 и CC1 пересекаются в точке O; AC1: C1B = p и BA1: A1C = q. Нужно доказать, что прямая BB1 проходит через точку O тогда и только тогда, когда CB1: B1A = 1: pq.
Поместим в точки A, B и C массы 1, p и pq соответственно. Тогда точка C1 является центром масс точек A и B, а точка A1 - центром масс точек B и C. Поэтому центр масс точек A, B и C с данными массами является точкой O пересечения прямых CC1 и AA1. С другой стороны, точка O лежит на отрезке, соединяющем точку B с центром масс точек A и C. Если B1 - центр масс точек A и C с массами 1 и pq, то AB1: B1C = pq: 1. Остается заметить, что на отрезке AC существует единственная точка, делящая его в данном отношении AB1: B1C.

2. Теорема Чевы

Отрезок, соединяющий вершину треугольника с некоторой точкой на противоположной стороне, называется чевианой . Таким образом, если в треугольнике ABC X , Y и Z - точки, лежащие на сторонах BC , CA , AB соответственно, то отрезки AX , BY , CZ являются чевианами. Этот термин происходит от имени итальянского математика Джованни Чевы, который в 1678 году опубликовал следующую очень полезную теорему:

Теорема 1.21. Если три чевианы AX, BY, CZ (по одной из каждой вершины) треугольника ABC конкурентны, то

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Рис. 3.

Когда мы говорим, что три прямые (или отрезка) конкурентны , то мы имеем в виду, что все они проходят через одну точку, которую обозначим через P . Для доказательства теоремы Чевы вспомним, что площади треугольников с равными высотами пропорциональны основаниям треугольников. Ссылаясь на рисунок 3, мы имеем:

|BX| |XC| = SABX SAXC = SPBX SPXC = SABX− SPBX SAXC− SPXC = SABP SCAP .

Аналогично,

|CY| |YA| = SBCP SABP , |AZ| |ZB| = SCAP SBCP .

Теперь, если мы перемножим их, то получим

|BX| |XC| · |CY| |YA| · |AZ| |ZB| = SABP SCAP · SBCP SABP · SCAP SBCP =1 .

Теорема, обратная к этой теореме, также верна:

Теорема 1.22. Если три чевианы AX, BY, CZ удовлетворяют соотношению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 ,

то они конкурентны .

Чтобы это показать, предположим, что две первые чевианы пересекаются в точке P , как и прежде, а третья чевиана, проходящая через точку P , будет CZ′ . Тогда, по теореме 1.21,

|BX| |XC| · |CY| |YA| · |AZ′| |Z′B| =1 .

Но по предположению

|BX| |XC| · |CY| |YA| · |AZ| |ZB| =1 .

Следовательно,

|AZ| |ZB| = |AZ′| |Z′B| ,

точка Z′ совпадает с точкой Z , и мы доказали, что отрезки AX , BY и CZ конкурентны (, стр. 54 и , стр, 48, 317).

Класс: 9

Цели урока:

  1. обобщить, расширить и систематизировать знания и умения учащихся; научить использовать знания при решении сложных задач;
  2. способствовать развитию навыков самостоятельного применения знаний при решении задач;
  3. развивать логическое мышление и математическую речь учащихся, умение анализировать, сравнивать и обобщать;
  4. воспитывать у учащихся уверенность в себе, трудолюбие; умение работать в коллективе.

Задачи урока:

  • Образовательная: повторить теоремы Менелая и Чевы; применить их при решении задач.
  • Развивающая: учить выдвигать гипотезу и умело доказательно отстаивать свое мнение; проверить умение обобщать и систематизировать свои знания.
  • Воспитательная: повысить интерес к предмету и подготовить к решению более сложных задач.

Тип урока: урок обобщения и систематизации знаний.

Оборудование: карточки для коллективной работы на уроке по данной теме, индивидуальные карточки для самостоятельной работы, компьютер, мультимедийный проектор, экран.

Ход урока

I этап. Организационный момент (1 мин.)

Учитель сообщает тему и цель урока.

II этап. Актуализация опорных знаний и умений (10 мин.)

Учитель: На уроке вспомним теоремы Менелая и Чевы для того, чтобы успешно перейти к решению задач. Давайте вместе с вами посмотрим на экран, где представлен. Для какой теоремы дан этот рисунок? (теорема Менелая). Постарайтесь четко сформулировать теорему.

Рисунок 1

Пусть точка A 1 лежит на стороне BC треугольника АВС, точка C 1 – на стороне AB, точка B 1 – на продолжении стороны АС за точку С. Точки A 1 , B 1 и C 1 лежат на одной прямой тогда и только тогда, когда выполняется равенство

Учитель: Давайте вместе рассмотрим следующий рисунок. Сформулируйте теорему для этого рисунка.


Рисунок 2

Прямая AD пересекает две стороны и продолжение третьей стороны треугольника ВМС.

По теореме Менелая

Прямая МВ пересекает две стороны и продолжение третьей стороны треугольника АDС.

По теореме Менелая

Учитель: Какой теореме соответствует рисунок? (теорема Чевы). Сформулируйте теорему.


Рисунок 3

Пусть в треугольнике АВС точка A 1 лежит на стороне ВС, точка B 1 – на стороне АС, точка C 1 – на стороне АВ. Отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке тогда и только тогда, когда выполняется равенство

III этап. Решение задач. (22 мин.)

Класс разбивается на 3 команды, каждая получает карточку с двумя различными задачами. Дается время на решение, затем на экране появляются <Рисунки 4-9>. По готовым чертежам к задачам представители команд поочередно объясняют свое решение. После каждого объяснения следует обсуждение, ответы на вопросы и проверка правильности решения на экране. В обсуждении принимают участие все члены команд. Чем активнее команда, тем выше она оценивается при подведении итогов.

Карточка 1.

1. В треугольнике АВС на стороне ВС взята точка N так, что NC = 3BN; на продолжении стороны АС за точку А взята точка М так, что МА = АС. Прямая MN пересекает сторону АВ в точке F. Найдите отношение

2. Докажите, что медианы треугольника пересекаются в одной точке.

Решение 1


Рисунок 4

По условию задачи МА = АС, NC = 3BN. ПустьMA = AC =b, BN = k, NC = 3k. Прямая MNпересекает две стороны треугольника АВС и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 5

Пусть AM 1 , BM 2 , СM 3 – медианы треугольника АВС. Чтобы доказать, что эти отрезки пересекаются в одной точке, достаточно показать, что

Тогда по теореме Чевы (обратной) отрезки AM 1 , BM 2 и СM 3 пересекаются в одной точке.

Имеем:

Итак, доказано, что медианы треугольника пересекаются в одной точке.

Карточка 2.

1. На стороне PQтреугольника PQR взята точка N, а на стороне PR – точка L, причем NQ = LR. Точка пересечения отрезков QL и NR делит QL в отношении m:n, считая от точки Q. Найдите

2. Докажите, что биссектрисы треугольника пересекаются в одной точке.

Решение 1


Рисунок 6

По условию NQ = LR, ПустьNA = LR =a, QF = km, LF = kn. Прямая NR пересекает две стороны треугольника PQL и продолжение третьей.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 7

Покажем, что

Тогда по теореме Чевы (обратной) AL 1 , BL 2 , CL 3 пересекаются в одной точке. По свойству биссектрис треугольника

Перемножая почленно полученные равенства, получаем

Для биссектрис треугольника равенство Чевы выполняется, следовательно, они пересекаются в одной точке.

Карточка 3.

1. В треугольнике АВС AD – медиана, точка O – середина медианы. Прямая ВО пересекает сторону АС в точке К. В каком отношении точка К делит АС, считая от точки А?

2. Докажите, если в треугольник вписана окружность, то отрезки, соединяющие вершины треугольника с точками касания противоположных сторон, пересекаются в одной точке.

Решение 1


Рисунок 8

Пусть BD = DC = a, AO = OD = m. Прямая ВК пересекает две стороны и продолжение третьей стороны треугольника ADC.

По теореме Менелая

Ответ:

Доказательство 2


Рисунок 9

Пусть A 1 , B 1 и C 1 – точки касания вписанной окружности треугольника АВС. Для того чтобы доказать, что отрезки AA 1 , BB 1 и CC 1 пересекаются в одной точке, достаточно показать, что выполняется равенство Чевы:

Используя свойство касательных, проведенных к окружности из одной точки, введем обозначения: C 1 B = BA 1 = x, AC 1 = CB 1 = y, BA 1 = AC 1 = z.

Равенство Чевы выполняется, значит, биссектрисы треугольника пересекаются в одной точке.

IV этап. Решение задач (самостоятельная работа) (8 мин.)

Учитель: Работа команд закончена и сейчас приступим к самостоятельной работе по индивидуальным карточкам для 2-х вариантов.

Материалы к уроку для самостоятельной работы учащихся

Вариант 1. В треугольнике АВС, площадь которого равна 6, на стороне AB взята точка К, делящая эту сторону в отношении АК:BK = 2:3, а на стороне АС – точка L, делящая АС в отношении AL:LC = 5:3. Точка Qпересечения прямых СК и BL удалена от прямой AB на расстоянии . Найдите длину стороны АВ. (Ответ: 4.)

Вариант 2. На стороне АС в треугольнике АВС взята точка К. АК = 1, КС = 3. На стороне АВ взята точка L. AL:LВ = 2:3, Q – точка пересечения прямых ВК и СL. Найдите длину высоты треугольника АВС, опущенной из вершины В. (Ответ: 1,5.)

Работы сдаются учителю для проверки.

V этап. Итог урока (2 мин.)

Анализируются допущенные ошибки, отмечаются оригинальные ответы и замечания. Подводятся итоги работы каждой команды и выставляются оценки.

VI этап. Домашнее задание (1 мин.)

Домашнее задание составлено из задач №11, 12 стр. 289-290, №10 стр. 301 .

Заключительное слово учителя (1 мин).

Сегодня вы услышали со стороны математическую речь друг друга и оценили свои возможности. В дальнейшем, будем применять такие обсуждения для большего понимания предмета. Аргументы на уроке дружили с фактами, а теория с практикой. Вам всем спасибо.

Литература:

  1. Ткачук В.В. Математика абитуриенту. – М.: МЦНМО, 2005.

В курсе геометрии есть теоремы, которые изучаются в школе недостаточно подробно, но которые могут быть полезны для решения наиболее сложных задач ОГЭ и ЕГЭ. К ним относится, например, теорема Менелая. Традиционно она изучается в классах с углублённым изучением математики в 8-м классе, а в обычной программе (по учебнику Атанасяна) теорема Менелая включена в учебник 10-11 классов.
Между тем результат штудирования Интернет-ресурсов, упоминающих теорему Менелая, показывает, что обычно она формулируется неполно и потому неточно, а все случаи её использования, равно как и доказательство обратной теоремы не приводятся. Цель настоящей статьи - разобраться, что такое теорема Менелая, как и для чего она используется, а также поделиться методикой преподавания этой теоремы на индивидуальных занятиях репетитора с учениками.
Рассмотрим типовую задачу (Задание № 26, ОГЭ), встречающуюся на экзаменах во множестве вариантов, отличающихся только числами в условии.


Решение самой задачи несложное – ознакомиться с ним можно ниже. В настоящей же статье нас интересует главным образом немножко другой момент, который зачастую опускается, понимается, как сам собой разумеющийся, как очевидный. Но очевидное - это то, что можно доказать. А доказать это можно различными способами, - обычно доказывают исключительно с помощью подобия, - но можно и с помощью теоремы Менелая.
Из условия следует, что, так как углы при нижнем основании трапеции в сумме составляют 90°, то если продлить боковые стороны, получится прямоугольный треугольник. Далее из получившейся точки пересечения продолжений боковых сторон проводят отрезок, который проходит через середины оснований. А почему этот отрезок проходит через все эти три точки? Обычно об этом в решениях задачи, встречающихся в Интернете, не говорится ни слова. Отсутствует даже отсылка к теореме о четырёх точках трапеции, не говоря уже о доказательстве этого утверждения. А между тем, оно может быть доказано с помощью теоремы Менелая, которая представляет собой условие принадлежности трёх точек к одной прямой.

Формулировки теоремы Менелая
Настало время сформулировать теорему. Надо отметить, что в различных учебниках и пособиях встречаются довольно-таки разные её формулировки, хотя суть остаётся неизменной. В учебнике Атанасяна и др. за 10-11 классы приводится такая формулировка теоремы Менелая, назовём её "векторной":

В учебнике «Геометрия 10-11 класс» Александрова и др., а также в учебном пособии этих же авторов «Геометрия. 8 класс» приводится несколько иная формулировка теоремы Менелая, причём и для 10-11 классов и для 8 класса она одинаковая:
Здесь необходимо сделать три примечания.
Примечание 1. На экзаменах не бывает задач, которые необходимо решить только с помощью векторов, для которых и используется именно «минус единица». Поэтому для практического использования наиболее удобна формулировка, представляющая, по сути, следствие из теоремы для отрезков (это вторая формулировка, выделенная жирными буквами). Ею и ограничимся для дальнейшего изучения теоремы Менелая, поскольку наша цель научиться применять её для решения задач.
Примечание 2. Несмотря на то, что во всех учебниках чётко оговаривается и тот случай, когда все три точки A 1 , B 1 и C 1 могут лежать на продолжениях сторон треугольника (или на прямых, содержащих стороны треугольника), на нескольких репетиторских сайтах Интернета формулируется только тот случай, когда две точки лежат на двух сторонах, а третья - на продолжении третьей стороны. Вряд ли это можно оправдать тем, что на экзаменах встречаются только задачи первого типа и не могут встретиться задачи, когда все эти точки лежат на продолжениях трёх сторон.
Примечание 3. Обратная теорема, т.е. условие для того, чтобы три точки лежали на одной прямой, обычно не рассматривается вовсе, а некоторые репетиторы даже советуют (???) заниматься только прямой теоремой, и не рассматривать обратную теорему. Между тем доказательство обратного утверждения достаточно поучительно и позволяет доказывать утверждения, похожие на то, что приведено в решении задачи 1. Опыт доказательства обратной теоремы, несомненно, даст ощутимую пользу ученику при решении задач.

Рисунки и закономерности

Для того, чтобы научить ученика видеть теорему Менелая в задачах и пользоваться ею при решениях важно обратить внимание на рисунки и закономерности в записи теоремы для конкретного случая. А поскольку сама теорема в "чистом" виде, т.е. без окружения другими отрезками, сторонами различных фигур в задачах обычно не встречается, то целесообразнее показывать теорему на конкретных задачах. А если и показывать рисунки в качестве объяснения, то делать их многовариантными. При этом выделять одним цветом (например, красным) прямую, которая образовывается тремя точками, а синим - отрезки треугольника, участвующие в записи теоремы Менелая. При этом те элементы, которые не участвуют, остаются чёрными:

На первый взгялд может показаться, что формулировка теоремы достаточно сложная и не всегда понятная; ведь в ней участвуют три дроби. Действительно, если опыта у ученика недостаточно, то он легко может ошибиться в написании, и как следствие, неправильно решить задачу. И вот тут, бывает, начинаются проблемы. Дело в том, что в учебниках обычно не акцентируется внимание на том, как «совершать обход» при написании теоремы. Ничего не говорится и о закономерностях записи самой теоремы. Поэтому некоторые репетиторы даже рисуют различные стрелки, в каком порядке записывать формулу. И предлагают ученикам строго следовать таким установкам. Отчасти это правильно, но куда важнее понять суть теоремы, чем чисто механически ее записывать, пользуясь «правилом обхода» и стрелками.
На самом деле, важно понять всего лишь логику "обхода", а она настолько точная, что ошибиться в написании формулы невозможно. В обоих случаях a) и b) напишем формулу для треугольника AMC.
Для начала определяем для себя три точки - вершины треугольника. У нас это точки A, M, C. Затем определяем точки, лежащие на пересекающей прямой (красной прямой), это - B, P, K. Начинаем "движение" с вершины треугольника, например, из точки C. Из этой точки "идём" к точке, которая образуется пересечением, например, стороны AC и пересекающей прямой - у нас это точка K. Пишем в числитель первой дроби - СК. Дальше из точки K "идем" в оставшуюся точку на прямой AC - в точку A. В знаменатель первой дроби пишем - KA. Так как точка A принадлежит ещё и прямой AM, то проделываем то же самое с отрезками на прямой AM. И тут опять, начинаем с вершины, далее "идём" в точку на пересекающей прямой, после чего переходим в вершину M. "Очутившись" на прямой BC проделываем то же самое и с отрезками на этой прямой. Из M "идём" конечно же в B, после чего возвращаемся в C. Этот "обход" можно совершать как по часовой стрелке, так и против часовой стрелки. Важно только понять правило обхода - из вершины к точке на прямой, и от точки на прямой - к другой вершине. Примерно так обычно и объясняют правило записи произведения дробей. В итоге получается:
Обратим внимание на то, что весь "обход" отражён в записи и для удобства показан стрелками.
Однако получившуюся запись можно получить не выполняя никакого "обхода". После того, как выписаны точки - вершины треугольника (A, M, C ) и точки - лежащие на пересекающей прямой (B, P, K ), записывают ещё и тройки букв, обозначающих точки, лежащие на каждой из трёх прямых. В наших случаях, это I) B , M , C ; II) A , P , M и III) A , C , K . После этого верную левую часть формулы можно написать даже не глядя на чертёж и в любом порядке. Нам достаточно из каждой тройки букв написать верные дроби, которые подчиняются правилу - условно "средние" буквы - это точки пересекающей прямой (красные). Условно "крайние" буквы - это точки вершин треугольника (синие). При написании формулы таким способом надо следить только за тем, чтобы любая "синяя" буква (вершина треугольника) попала бы по разу и в числитель и в знаменатель Например.
Этот метод бывает особенно полезен для случаев типа b), а также для самопроверки.

Теорема Менелая. Доказательства
Существует несколько различных способов доказательства теоремы Менелая. Иногда доказывают с помощью подобия треугольников, для чего из точки M (как на данном чертеже) проводят отрезок, параллельный AC. Другие проводят дополнительную прямую, не параллельную пересекающей прямой, а потом прямыми, параллельными пересекающей словно "проецируют" все нужные отрезки на эту прямую и с помощью обобщения теоремы Фалеса (т.е. теоремы о пропорциональных отрезках) выводят формулу. Однако, пожалуй, наиболее простой способ доказательства получается, если из точки M провести прямую, параллельную пересекающей. Докажем теорему Менелая этим способом.
Дано: Треугольник ABC. Прямая PK пересекает стороны треугольника и продолжение стороны MC в точке B.
Доказать, что выполняется равенство:
Доказательство. Проведём луч MM 1 , параллельно BK. Запишем отношения, в которых участвуют отрезки, которые входят в запись формулы теоремы Менелая. В одном случае рассмотрим прямые, пересекающиеся в точке A, а в другом случае, пересекающиеся в точке C. Перемножим левые и правые части этих уравнений:

Теорема доказана.
Аналогично доказывается теорема и для случая b}.


Из точки C проведём отрезок CC 1 , параллельный прямой BK. Запишем отношения, в которых участвуют отрезки, которые входят в запись формулы теоремы Менелая. В одном случае рассмотрим прямые, пересекающиеся в точке A, а в другом случае, пересекающиеся в точке M. Так как в теореме Фалеса ничего не говорится о расположении отрезков на двух пересекающихся прямых, то отрезки могут располагаться и по разные стороны от точки M. Поэтому

Теорема доказана.

Теперь докажем обратную теорему.
Дано:
Доказать, что точки B, P, К лежат на одной прямой.
Доказательство. Пусть прямая BP пересекает AC в некоторой точке K 2 , не совпадаюшей с точкой K. Так как BP - это прямая, содержащая точку K 2 , то для неё справедлива только что доказанная теорема Менелая. Значит, для нее запишем
Однако только что мы доказали, что
Отсюда следует, что Точки K и K 2 совпадают, так как делят сторону AC в одном и том же отношении.
Для случая b) теорема доказывается аналогично.

Решение задач с помощью теоремы Менелая

Для начала вернёмся к Задаче 1 и решим её. Прочитаем ещё раз . Сделаем чертёж:

Дана трапеция ABCD. ST - средняя линия трапеции, т.е. одно из данных расстояний. Углы A и D в сумме составляют 90°. Продлеваем боковые стороны AB и CD и на их пересечении получаем точку K. Соединим точку K с точкой N - серединой BC. Теперь докажем, что точка P, являющаяся серединой основания AD также принадлежит прямой KN. Рассмотрим последовательно треугольники ABD и ACD. Две стороны каждого треугольника пересекает прямая KP. Предположим, прямая KN пересекает основание AD в некоторой точке X. По теореме Менелая:
Так как треугольник AKD прямоугольный, то точка P, являющаяся серединой гипотенузы AD, равноудалена от A, D и K Аналогично точка N равноудалена от точек B, C и K. Откуда одно основание равно 36, а другое равно 2.
Решение. Рассмотрим треугольник BCD. Его пересекает луч AX, где X - точка пересечения этого луча с продолжением стороны BC. По теореме Менелая:
Подставив (1) во (2) получаем:

Решение. Обозначим буквами S 1 , S 2 , S 3 и S 4 площади соответственно треугольников AOB, AOM, BOK и четырёхугольника MOKC.

Так как BM - медиана, то S ABM = S BMC .
Значит, S 1 + S 2 = S 3 + S 4 .
Так как надо найти отношение площадей S 1 и S 4 , поделим обе части уравнения на S 4:
Подставим эти значения в формулу (1): Из треугольника BMC при секущей AK по теореме Менелая имеем: Из треугольника AKC при секущей BM по теореме Менелая имеем: Все нужные отношения выражены через k и теперь можно подставить их в выражение (2):
Решение этой задачи с помощью теоремы Менелая рассмотрено на странице .

Примечание репетитора по математике. Применение теоремы Менелая в этой задаче - это тот самый случай, когда этот метод позволяет существенно сэкономить время на экзамене. Эта задача предлагается в демоварианте вступительного экзамена в лицей при ВШЭ в 9-й класс (2019 г.).

© Репетитор по математике в Москве, Александр Анатольевич, 8-968-423-9589.

Решите самостоятельно

1) Задача попроще. На медиане BD треугольника ABC отмечена точка M так, что BM: MD = m: n. Прямая AM пересекает сторону BC в точке K.
Найдите отношение BK: KC.
2) Задача посложнеее. Биссектриса угла A параллелограмма ABCD пересекает сторону ВС в точке P, а диагональ BD - в точке T. Известно, что AB: AD = k (0 3) Задача № 26 ОГЭ. В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 36. Найдите стороны треугольника ABC.
Подсказка репетитора по математике. В Интернете встречается решение такой задачи с помощью дополнительного построения и далее либо подобия, либо нахождения площадей, и только после этого сторон треугольника. Т.е. оба этих способа требуют дополнительного построения. Однако решение такой задачи с помощью свойства биссектрисы и теоремы Менелая не требует никаких дополнительных построений. Оно гораздо проще и рациональнее.

— Что общего между теоремой Менелая и наркотиками?
— О них все знают, но никто не говорит.
Типичный разговор с учеником

Это прикольная теорема, которая поможет вам в тот момент, когда кажется, что уже ничего не поможет. В уроке мы сформулируем саму теорему, рассмотрим несколько вариантов её использования, а в качестве десерта вас ждёт суровое домашнее задание. Поехали!

Для начала — формулировка. Возможно, я дам не самую «красивую» версию теорему, но зато самую понятную и удобную.

Теорема Менелая. Рассмотрим произвольный треугольник $ABC$ и некую прямую $l$, которая пересекает две стороны нашего треугольника внутренним образом и одну — на продолжении. Обозначим точки пересечения $M$, $N$ и $K$:

Треугольник $ABC$ и секущая $l$

Тогда верно следующее соотношение:

\[\frac{AM}{MB}\cdot \frac{BN}{NC}\cdot \frac{CK}{KA}=1\]

Хочу отметить: не надо зубрить расположение букв в этой злобной формуле! Сейчас я расскажу вам алгоритм, по которому вы всегда сможете восстановить все три дроби буквально на лету. Даже на экзамене в состоянии стресса. Даже если вы сидите за геометрией в 3 часа ночи и вообще уже ничего не понимаете.:)

Схема простая:

  1. Чертим треугольник и секущую. Например, так, как показано в теореме. Обозначаем вершины и точки какими-нибудь буквами. Это может быть произвольны треугольник $ABC$ и прямая с точками $M$, $N$, $K$, либо какая-нибудь другая — суть не в этом.
  2. Ставим ручку (карандаш, маркер, гусиное перо) в любую вершину треугольника и начинаем обход сторон этого треугольника с обязательным заходом в точки пересечения с прямой . Например, если сначала пойти из точки $A$ в точку $B$, то получим отрезки: $AM$ и $MB$, затем $BN$ и $NC$, а затем (внимание!) $CK$ и $KA$. Поскольку точка $K$ лежит на продолжении стороны $AC$, то при движении из $C$ в $A$ придётся временно свалить из треугольника.
  3. А теперь просто делим соседние отрезки друг на друга ровно в том порядке, в котором мы получили их при обходе: $AM/MB$, $BN/NC$, $CK/KA$ — получим три дроби, произведение которых и даст нам единицу.

На чертеже это будет выглядеть вот так:

Простая схема, позволяющая восстановить формулу из т. Менелая

И сразу пара замечаний. Точнее, это даже не замечания, а ответы на типичные вопросы:

  • Что будет, если прямая $l$ пройдёт через вершину треугольника? Ответ: ничего. Теорема Менелая в этом случае не работает.
  • Что будет, если выбрать другую вершину для старта или пойти в другую сторону? Ответ: будет то же самое. Просто изменится последовательность дробей.

Думаю, с формулировкой разобрались. Давайте посмотрим, как вся эта дичь применяется для решения сложных геометрических задач.

Зачем всё это нужно?

Предупреждение. Чрезмерное применение теоремы Менелая для решения планиметрических задач может нанести непоправимый вред вашей психике, поскольку данная теорема значительно ускоряет вычисления и заставляет вспоминать другие важные факты из школьного курса геометрии.

Доказательство

Я не буду её доказывать.:)

Ладно, докажу:

Теперь осталось сравнить два полученных значения для отрезка $CT$:

\[\frac{AM\cdot BN\cdot CK}{BM\cdot CN\cdot AK}=1;\]

\[\frac{AM}{BM}\cdot \frac{BN}{CN}\cdot \frac{CK}{AK}=1;\]

Ну вот и всё. Осталось только «причесать» эту формулу, правильно расставив буквы внутри отрезков — и формула готова.:)