P − T − X диаграммы состояния – основы материаловедения. Фазовые диаграммы как средство описания взаимодействия различных материалов

(1. Правило фаз. 2. Понятия о фазовых диаграммах равновесия. 3. Правило отрезков. 4. Диаграмма состояния III рода )

1. Правило фаз

При изменении температуры или концентрации компонентов система (сплав) может находиться в различных состояниях. В процессе перехода из одного состояния в другое в нем совершаются фазовые превращения – появляются новые или исчезают существующие фазы.

Возможность изменения состояния системы, т. е. числа и химического состава фаз, определяется ее вариантностью – числом степеней свободы .

Определение. Число степеней свободы системы - это число внешних (температура, давление) и внутренних (концентрация) факторов, которое можно изменять без изменения числа фаз системы.

Уравнение правила фаз (закон Гиббса ) для системы при постоянном давлении, образованной несколькими компонентами, имеет вид

С = К – Ф + 1, (3.1)

где С – число степеней свободы (вариантность системы); К – число компонентов; Ф – число фаз.

Так как число степеней свободы всегда больше или равно нулю, т.е. С  0, то между числом компонентов и фаз выполняется условие

Ф  К + 1, (3.2)

устанавливающее максимально возможное число равновесных фаз в сплавах.

2. Понятия о фазовых диаграммах равновесия

Фазовые диаграммы равновесия (диаграммы состояния ) используются при исследовании структуры сплавов, выборе режимов их термообработки и др.

Фазовая диаграмма равновесия показывает, какие фазы существуют при заданных условиях (концентрация компонентов и температура) в равновесных условиях. По диаграмме можно определить агрегатное состояние, количество и химический состав фаз, а также структурно-фазовое состояние сплава в зависимости от температуры и концентрации образующих его компонентов.

Фазовая диаграмма равновесия представляет собой «график», на оси абсцисс которого отложена концентрация компонентов (суммарное содержание компонентов в любом сплаве равно 100 %), а по оси ординат – температура. Крайние точки (левая и правая) на оси абсцисс диаграммы соответствуют чистым компонентам. Любая другая точка на этой оси отвечает определенной концентрации компонентов сплава.

Например, для двухкомпонентного сплава (рис. 3.1) точка А соответствует чистому, т.е. содержащему 100 %, компоненту А, точка В – чистому компоненту В, точка С – сплаву, содержащему 75 % А и 25 % В, точка D – сплаву, содержащему 75 % В и 25 % А. На оси концентраций указывается изменение содержания одного из компонентов (на рис. 3.1 – компонента В).

Рис. 3.1 – Координаты фазовой диаграммы равновесия

Для построения диаграмм состояния исследуют сплавы различного состава при разных температурах. Традиционным методом построения диаграмм является метод термического анализа, который позволяет получать кривые охлаждения сплавов в координатах «температура – время» – кривые охлаждения (сплавов).

Охлаждение сплавов производят с очень низкой скоростью, т. е. в условиях, приближенных к равновесным.

Построение диаграмм охлаждения выполняют в следующей последовательности:

    в координатах «температура – концентрация» проводят вертикальные линии, соответствующие сплавам исследованных составов (чем меньше шаг по концентрации, тем точнее диаграмма);

    для этих сплавов строят кривые охлаждения;

    на вертикальных линиях точками наносят температуру, при которой изменяется агрегатное состояние или строение сплавов;

    точки одинаковых превращений разных сплавов соединяют линиями, которые ограничивают области одинаковых состояний системы.

Такие построения мы выполняли в лабораторной работе № 1 при построении диаграммы состояния «цинк – олово» (« Zn Sn »).

Вид диаграммы зависит от того, как взаимодействуют между собой компоненты в твердом и жидком состояниях.

Простейшими диаграммами являются бинарные (двойные или двухкомпонентные) системы (многокомпонентные системы могут быть сведены к ним при фиксированных значениях «избыточных» компонентов ), к основным видам которых относятся диаграммы состояния для сплавов, представляющих собой в твердом состоянии (при нормальной температуре):

а) механические смеси из чистых компонентов (I рода);

б) сплавы с неограниченной растворимостью компонентов (II рода);

в) сплавы с ограниченной растворимостью компонентов (III рода);

г) сплавы с образованием химического соединения (IV рода).

В лекции рассмотрим построение фазовых диаграмм равновесия на примере диаграммы состояния III рода – сплава с ограниченной растворимостью компонентов (остальные виды диаграмм рассмотрены на лабораторных работах).

Но предварительно обсудим важное для анализа подобных диаграмм правило отрезков (рычага).


Введение

1. Типы фазовых диаграмм

2. Системы, имеющие важное значение в микроэлектронике

3. Твердая растворимость

4. Фазовые переходы

Литература


Введение

Фазовые диаграммы состояний являются неотъемлемой частью любого обсуждения свойств материалов в тех случаях, когда речь идет о взаимодействии различных материалов. Особенно фазовые диаграммы состояния важны в микроэлектронике, т.к. для изготовления выводов и пассивирующих слоев там приходится использовать большой набор различных материалов. В производстве интегральных микросхем в тесном контакте с различными металлами находится кремний, особое внимание уделим тем фазовым диаграммам, в которых в качестве одной из компонент фигурирует именно кремний.

В данном реферате рассмотрено какие бывают типы фазовых диаграмм, понятие фазового перехода, твердой растворимости, самые важные системы веществ для микроэлектроники.


1. Типы фазовых диаграмм

Однофазовые диаграммы состояний – это графики, на которых в зависимости от давления, объем и температуры изображают фазовое состояние только одного материала. Обычно не принято рисовать трехмерный график на двумерной плоскости – изображают его проекцию на плоскость температура – давление. Пример однофазной диаграммы состояний дан на рис. 1.

Рис. 1. Однофазная диаграмма состояний

На диаграмме четко разграничены области, в которых материал может существовать только в одном фазовом состоянии – как твердое тело, жидкость или газ. Вдоль разграниченных линий вещество может иметь два фазовых состояния (две фазы), находящихся в контексте друг с другом. Имеет место любая из комбинаций: твердое тело – жидкость, твердое тело – пар, жидкость – пар. В точке пересечения линий диаграммы, так называемой тройной точке, могут одновременно существовать все три фазы. Причем это возможно при одной-единственной температуре, поэтому тройная точка служит хорошей точкой отсчета температур. Обычно в качестве точки отсчета выступает тройная точка воды (например, в прецизионных измерениях с использованием термопар, где опорный спай контактирует с системой лед – вода – пар).

Двойная фазовая диаграмма (диаграмма состояния двойной системы) представляет состояние системы с двумя компонентами. На таких диаграммах по оси ординат откладывается температура, по оси абсцисс – процентное соотношение компонент смеси (обычно это или процент от общей массы (вес. %), или процент от общего числа атомов (ат. %)). Давление обычно полагается равным 1 атм. Если рассматривается жидкая и твердая фазы, измерением объема пренебрегают. На рис. 2. представлена типичная двухфазная диаграмма состояний для компонент A и B с использованием весового или атомного процента.

Рис. 2. Двухфазная диаграмма состояний

Буквой  обозначена фаза вещества A с растворенным веществом B,  означает фазу вещества B с растворенным в нем веществом A, а  +  означает смесь этих фаз. Буква (от liquid - жидкий) означает жидкую фазу, а L+ и L+ означают жидкую фазу плюс фаза или соответственно. Линии, разделяющие фазы, т. е. линии, на которых могут существовать различные фазы вещества, имеют следующие названия: солидус – линия, на которой одновременно существуют фазы  или  с фазами L+ и L+ соответственно; сольвус – линия, на которой одновременно сосуществуют фазы  и  +  или  и  + , и ликвидус – линия, на которой одновременно существует фаза L с фазой L+ или L+.

Точка пересечения двух линий ликвидуса часто является точкой наименьшей температуры плавления для всех возможных комбинаций веществ A и B и называется эвтектической точкой. Смесь с соотношением компонент в эвтектической точке называется эвтектической смесью (или просто эвтектикой).

Рассмотрим как происходит переход смеси из жидкого состояния (расплава) в твердое и как фазовая диаграмма помогает предсказать равновесную композицию всех фаз, существующих при данной температуре. Обратимся к рис. 3.

Рис. 3. Двухфазная диаграмма состояний, на которой показаны процессы отвердевания

Предположим, что вначале смесь имела состав C M при температуре T 1 , при температуре от T 1 до T 2 существует жидкая фаза, а при температуре T 2 одновременно существуют фазы L и . Состав присутствующей фазы L есть C М, состав фазы  есть C  1 . При дальнейшем снижении температуры до T 3 состав жидкой меняется вдоль кривой ликвидуса, а состав фазы  – вдоль кривой солидуса до пересечения с изотермой (горизонтальной линией) T 3 . Теперь состав фазы L есть C L , а состав фазы есть C  2 . Следует отметить, что состав C  2 должен иметь не только вещество, перешедшее в фазу при при температуре T 3 , но и все вещество, перешедшее в фазу  при более высокой температуре, должно иметь состав C  2 . Это выравнивание составов должно произойти путем твердотельной диффузии компонента A в существующую фазу , так что к моменту достижения температуры T 3 все вещество, находящееся в фазе , будет иметь состав C  2 . Дальнейшее снижение температуры приводит нас в эвтектическую точку. В ней фазы  и  существуют одновременно с жидкой фазой. При более низких температурах существуют только фазы  и . Образуется смесь фаз  и  состава C E с агрегатами  с начальным составом C  3 . Затем, выдерживая эту смесь длительное время при температуре ниже эвтектической, можно получить твердое тело. Образовавшееся твердое тело будет состоять из двух фаз. Состав каждой из фаз можно определить в точке пересечения изотермы с соответствующей линией сольвуса.

Только что было показано, как определить состав каждой из присутствующих фаз. Теперь рассмотрим задачу определения количества вещества в каждой фазе. Во избежания путаницы на рис. 4. еще раз приводится простая двухфазная диаграмма. Предположим, что при температуре T 1 состав расплава есть C M (имеется в виду компонента B), тогда при T 2 фаза L имеет состав C L , а фаза  будет иметь состав C s . Пусть M L – масса вещества, находящегося в твердом состоянии, а M S – масса вещества, находящегося в твердом состоянии. Условие сохранения суммарной массы приводит к следующему уравнению

(M L + M S)C M = M L C L + M S C S .


Рис. 4. Правило уровня

В нем нашел отражение тот факт, что общая масса вещества при температуре T 1 , умноженная на процент B, – есть общая масса вещества B. Она равна сумме масс вещества B, существующего в жидкой и в твердой фазах при температуре T 2 . Решая это уравнение, получаем

. (1)

Это выражение известно как «правило уровня». С помощью этого правила, зная начальный состав расплава и общую его массу, можно определить массы обеих фаз и количество вещества B в любой фазе для любого участка двухфазной диаграммы. Точно так же можно вычислить и

На рис. 5. приведен еще одни пример отвердения расплава. Снижение температуры от T 1 до T 2 приводит к смешиванию фаз L и  с составом соответственно C M иC  . По мере дальнейшего охлаждения состав L меняется вдоль ликвидуса, а состав  - вдоль солидуса, как было описано ранее. При достижении температуры T 3 состав  станет равным C М, и, как следует из правила уровня, при температуре, меньшей T 3 , жидкая фаза существовать не может. При температуре, меньшей T 4 , фазы  и  существуют как агрегаты фаз  и . Например, при температуре T 5 агрегаты фазы  будут иметь состав, определяемый пересечением изотермы T 5 и сольвуса . Состав  определяется аналогично – пересечением изотермы и сольвуса .

Рис. 5. Двухфазная диаграмма и процесс отвердевания количество вещества A, присутствующего в любой из фаз

Участки двухфазной диаграммы, называемые до сих пор  и , – это участки твердой растворимости: в области  растворено A и B. Максимальное количество A, которое может быть растворено в B при данной температуре, находятся в зависимости от температуры. При эвтектической или более высокой температуре может иметь место быстрое сплавливание A и B. Если полученный при этом сплав резко охладить, то атомы A могут быть «пойманы» в решетке B. Но если твердая растворимость при комнатной температуре намного ниже (это говорит о том, что при этой температуре рассматриваемый подход не слишком пригоден), то в сплаве могут возникать сильнейшие напряжения, существенно влияющие на его свойства (при наличии значительных напряжений возникают пересыщенные твердые растворы, и система находится не в равновесном состоянии, а диаграмма дает информацию только о равновесных состояниях). Иногда, такой эффект является желательным, например при упрочнении стали закалкой с получением мартенсита. Но в микроэлектронике его результат будет разрушительным. Поэтому легирование, т. е. внесение добавок в кремний до диффузии, проводится при повышенных температурах с таким расчетом, чтобы предупредить повреждение поверхности из-за избыточного сплавления. Если же количество легирующей примеси в подложке окажется выше предела твердой растворимости при любой температуре, то появляется вторая фаза и связанная с ней деформация.

2. Системы веществ, имеющие важное значение в микроэлектронике

Существует ряд материалов, которые полностью растворимы друг в друге. Примером может служить система из двух таких важных для микроэлектроники веществ, как кремний и германий. Система кремний – германий показана на рис. 6.

Рис. 6. Система кремний – германий

Диаграмма не имеет эвтектической точки. Подобная диаграмма называется изоморфной. Для того чтобы два элемента были изоморфными, они должны подчиняться правилам Хьюма – Ротери, т.е. иметь различие в значениях атомных радиусов не более чем на 15%, одинаковую вероятность, одинаковую кристаллическую решетку и, кроме того, приблизительно одинаковую электроотрицательность (электроотрицательность атома – это присущее ему семейство привлекать или захватывать лишние электроны, при ковалентных связях). Системы Cu – Ni, Au – Pt и Ag – Pd, также являются изоморфными.

Система Pb – Sn служит хорошим примером простой бинарной системы со значительной, хотя и ограниченной твердой растворимостью. Фазовая диаграмма состояний этой системы приведена на рис. 7. Точка пересечения солидуса и сольвуса называется граничной растворимостью, значение граничной растворимости как олова в свинце, так и свинца в олове будет большим. Данная система важна для микроэлектроники благодаря широкому применению оловянных-свинцовых припоев. Их двухфазной диаграммы этой системы видно, как изменение состава сплава меняет его температуру плавления. Когда при изготовлении микросхемы требуется провести несколько последовательных паек, то для каждой следующей пайки применяется припой с более низкой температурой плавления. Это делается для того, чтобы не потекли пайки, сделанные раньше.

Рис. 7. Фазовая диаграмма состояний системы свинец – олово

Для производства микросхем также важны свойства системы Au – Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или платы с золотыми контактными площадками, пользуясь эвтектической реакцией Au – Si в качестве основного механизма сварки (или пайки). Для пайки кремниевых кристаллов также используется золото, содержащее несколько процентов германия.

Комбинации элементов, образующих химические соединения, имеют более сложные диаграммы состояний. Их можно разбить на две (или несколько) более простых диаграммы, каждая из которых относится к определенной паре соединений или соединению и элементов. Например, AuAl 2 образуется при соединении 33% (процент атомный) золота с алюминием при температуре менее 1060 о (рис. 2.10). Слева от этой линии сосуществует AuAl 2 и фаза чистого алюминия. Соединения, подобные AuAl 2 , называются интерметаллическими и образуются при соответствующем стехиометрическом соотношении двух элементов. Интерметаллические соединения характеризуются высокой температурой плавления, сложной кристаллической структурой и, кроме того, отличаются твердостью и хрупкостью.

Фазовая диаграмма состояний Au – Al может быть разбита на две или больше диаграмм, например на диаграмму Al – AuAl 2 и диаграмму AuAl 2 – Au.


Рис. 8. Система алюминий – кремний

Диаграмма системы Au – Al, показанная на рис. 2.10, имеет в микроэлектронике крайне важное значение, поскольку обычно золотые провода соединяются с алюминиевым слоем металлизации, расположенным поверх кремния. Здесь указано несколько важных интерметаллических соединений: AuAl 2 , Au 2 Al, Au 5 Al 2 и Au 4 Al. В проводниках связей Au – Al они могут присутствовать все.


Рис. 9. Система золото – кремний

Рис. 10. Система золото – алюминий

3. Твердая растворимость

Граничная растворимость большинства легирующих примесей в кремнии крайне мала и в действительности не является максимальной растворимостью. На рис. 11 представлена типичная кривая солидуса для примеси без кремния. Заметьте, что растворимость растет с температурой до определенного значения, а затем убывает до нуля при температуре плавления кремния. Такая кривая называется ретроградной кривой растворимости. Уточненная версия этой диаграммы в окрестности точки плавления кремния показана на рис. 12.

Рис. 11 Ретроградная растворимость кремния

Рис. 12 Типичная фазовая диаграмма кремния

Если состав расплава кремния равен C M в процентах массы растворенного вещества, то кремний будет застывать с содержанием растворенного вещества kC M , где k – коэффициент сегрегации (k=C S /C L). Когда концентрация в твердом теле достигнет значения C M при замораживании, концентрация в жидком растворе будет равна C M /k, поскольку соотношение концентраций в жидком и твердом растрах должна быть равна k. Наклон линии солидуса, следовательно, равен

,

а наклон ликвидуса равен

.

Отношение наклонов ликвидуса и солидуса оказывается равным коэффициенту сегрегации

. (2)

4. Фазовые переходы

Переходы из одного фазового состояния в другое при изменении параметров системы.

Фазовые переходы первого рода (испарение, конденсация, плавление, кристаллизация, переходы из одной кристаллической модификации в другую).

Кристаллическое состояние веществ классифицируется по семи сингониям (триклинная, моноклинная, ромбическая, тетрагональная, тригональная или ромб…., гексагональная, кубическая) при этом расположение атомов в этих сингониях характеризуется 14 типами решеток (решетки Браве). Степень упаковки атомов в этих решетках различна:


Простая кубическая f = 0,52

Объемно центрировая кубическая f = 0,68

Гранецентрированная кубическая f = 0,74

Гексагональная плотная упаковка f = 0,74

Из этих данных следует очень важный вывод, при полиморфных превращениях (изменение типа кристаллической решетки) происходит изменение объема и следовательно физико-химических свойств материалов.

При переходах первого рода в точке перехода сосуществует две фазы.

A  B 

а) переход осуществляется при определенной температуре T пер

б) при переходе изменяются скачком первые производные энергии: энтальпии, энтропии, объема (следовательно значит и плотности)


Фазовые переходы второго рода

При переходах второго рода первые производные свободной энергии, энтальпии, энтропии, объема, плотности изменяются монотонно.

Титанат бария – кубическая структура –> тетрагональный типичный пьезоэлектрик.

MnO – антиферромагнетик при 117 К переходит в парамагнитную фазу.

1. Согласно классификации фазовых превращений, предложенной в 1933 г. Эрипреситом, превращения подразделяются на превращения (переходы) I и II родов.

Переходы первого рода характеризуются тем, что первые производные термодинамического потенциала  по температуре и давлению изменяются скачкообразно

здесь S – энтропия, V – объем

Так как термодинамический потенциал при фазовых переходе меняется непрерывно определяется выражением

то энергия U также должна изменяться скачком. Так как


то теплота перехода

равна произведению температуры на разность энтропии фаз, т. е. скачкообразное изменение или поглощение теплоты.

Важным является непрерывное изменение термодинамического потенциала. Функция (Т) и (Т) не изменяют особенностей вблизи точки фазового перехода, при этом с обеих сторон точки фазового перехода имеются минимумы термодинамического потенциала.

Этой особенностью объясняется возможность перегрева или переохлаждения фаз в случае фазовых переходов в системе.

Определим взаимосвязи между скачками термодинамических функций и . После дифференцировании по температуре соотношение Функция (Р,Т) = (Р,Т) с учетом выражения для S, V и q получим

Эта известная формула Клайперона-Клаузиса. Она позволяет определить изменение давлений, находящихся в равновесии фаз при изменении температуры либо изменении температуры перехода между двумя фазами при изменении давления. Скачкообразное изменение объема приводит к отсутствию определенной связи между структурой и системой фаз, преобразующихся при фазовом переходе первого рода, которые в связи с этим изменяются скачком.

Типичными для фазовых переходов первого рода являются переходы между агрегатными состояниями вещества, аллотропическими превращения многие фазовые превращения в многокомпонентных материалах.

Принципиальное отличие фазовых переходов второго рода от фазовых переходов первого рода заключается в следующем: переходы второго рода характеризуются как непрерывностью изменения термодинамического потенциала, так и непрерывностью изменения производных термодинамического потенциала .

Химическое равновесие

Термодинамическая функция – функция состояния, определяющая изменение термодинамических потенциалов при изменении числа частиц в системе. Другими словами – есть функция, которая определяет направление и предел самопроизвольного перехода компонента из одной фазы в другую при соответствующих превращениях и условиях (T, P, V, S, n i).

Термодинамические потенциалы связаны с друг другом следующими соотношениями

Количество вещества в граммах; - количества вещества в молях;

М – молекулярный вес соответствующего вещества.

Для теории твердых растворов, на которых работают все приборы микроэлектроники огромное значение имеет развитый Гиббсом метод химических потенциалов. Химическое равновесие можно определить с помощью химических потенциалов.

Химический потенциал характеризуется энергией, приходящейся на 1 атом

Химический потенциал; G – энергия Гиббса;

N o – число Авогадро, N А – L = моль -1

т. е. (Р,Т) = (Р,Т)

Обе кривые характеризуют монотонное убывание с температурой, определяя значение энтропии фаз


Фазовые диаграммы состояний являются неотъемлемой частью обсуждения свойств материалов, когда речь идет о взаимодействии различных материалов.

Однофазовые диаграммы состояний изображают фазовое состояние только одного материала.

Двойная фазовая диаграмма (диаграмма состояния двойной системы) представляет состояние системы с двумя компонентами.

Комбинации элементов, образующих химические соединения, имеют более сложные диаграммы состояний.


Литература

1. Ормонт Б. Ф. Введение в физическую химию и кристаллохимию полупроводников. – М.: Высшая школа, 1973.

2. Физическое металловедение / Под редакцией Кана Р., вып. 2. Фазовые превращения. Металлография. – М.: Мир, 1968.

3. Ю.М. Таиров, В.Ф. Цветков «Технология полупроводниковых и диэлектрических материалов», - М.: Высшая школа, 1990р.

4. «Практикум по полупроводникам и полупроводниковим приборам», /Под ред. Шалимовой К.В. – М.: Высшая школа, 1968р.

Рассмотрим P T X диаграммы для бинарных систем. Интенсивные работы по изучению P T X диаграмм состояния показали, что использование высоких давлений (десятки и сотни тысяч атмосфер) в ряде случаев приводит к изменению типа диаграммы состояния, к резкому изменению температур фазовых и полиморфных превращений, к появлению новых фаз, отсутствующих в данной системе при атмосферном давлении. Так, например, диаграмма с неограниченной растворимостью в твердом состоянии при высоких температурах и распадом твердого раствора α на два твердых раствора α1 + α2 при низких температурах может с увеличением давления постепенно переходить в диаграмму с эвтектикой (см. рис. 4.18,а ). На рис. 4.18,б показана диаграмма состояния системы Ga–P, в которой образуется полупроводниковое соединение GaP. В зависимости от давления это соединение может плавиться конгруэнтно или инконгруэнтно. Соответственно изменяется и вид двойной диаграммы T X на различных изобарических сечениях тройной P T X диаграммы.

На практике объемные P T X диаграммы строятся очень редко. Обычно фазовые превращения в трехмерных P T X диаграммах ана

Рис. 4.18. а - P T X диаграмма; б - P T X диаграмма состояния

системы Ga–P с конгруэнтно и инконгруэнтно плавящимся соединением GaP в

зависимости от давления.

лизируют с помощью их проекций на плоскости P T , T X и P X , а также различных сечений при постоянных значениях температуры или давления (см. рис. 4.18,а ).

Заметим, что при анализе фазовых превращений в системе следует различать P T X фазовые диаграммы, в которых давление диссоциации P дис9 мало и P на фазовой диаграмме - это внешнее давление и в которых давление диссоциации велико и P - это P дис. В системах, компоненты которых обладают низким давлением диссоциации и в которых максимальная температура плавления смеси ниже самой низкой температуры кипения (в системе нет легколетучих компонентов), ролью газовой фазы при фазовых превращениях можно пренебречь. Если же давление диссоциации какого-либо из компонентов велико (система содержит легколетучие компоненты), то состав газовой фазы необходимо учитывать при температурах как выше, так и ниже ликвидуса.

Рассмотрим подробнее фазовые диаграммы P дис − T X с высоким

давлением диссоциации (фазовые диаграммы с легколетучими компонентами). Следует отметить, что внимание к ним повысилось в связи с возросшей ролью в полупроводниковой электронике соединений, содержащих летучие компоненты. Например, к ним относятся соединения AIIIBV, содержащие легколетучие компоненты фосфор и мышьяк, соединения AIIBVI, содержащие ртуть, AIVBVI, содержащие серу, и т. д.

Все полупроводниковые соединения обладают более или менее протяженной областью гомогенности, то есть способны растворять в себе

9 P дис - равновесное для данных условий давление диссоциации всех фаз, находящихся в равновесии. При наличии в системе одного легколетучего компонента P дис - это равновесное давление диссоциации легколетучего компонента системы.

какой-либо из компонентов сверх стехиометрического состава или третий компонент.

Любые отклонения от стехиометрического состава сказываются на электрических свойствах (см. гл. 3). Поэтому для воспроизводимого получения кристаллов, содержащих летучий компонент, с заданными свойствами необходимо и воспроизводимое получение соединений заданного состава.

Однако летучесть одного их компонентов соединения приводит к отклонению от стехиометрического состава из-за образования вакансий - анионных или катионных - в зависимости от того, давление диссоциации какого компонента будет выше, и, соответственно, избытка другого компонента. Как уже обсуждалось в гл. 3, вакансии в ряде соединений могут создавать акцепторные или донорные уровни, тем самым влияя на физические свойства.

Энергия образования вакансий в позициях A и B практически никогда не бывает одинаковой, поэтому концентрация анионных и катионных вакансий также различна, а область гомогенности соединения оказывается несимметричной относительно стехиометрического состава. Соответственно практически для всех соединений максимум температуры плавления не соответствует сплаву стехиометрического состава.10

Предотвратить изменение состава соединения за счет летучести можно, если выращивать его из расплава или раствора при внешнем давлении летучего компонента, равном давлению диссоциации при температуре выращивания. Это условие и выбирают с помощью P дис − T X диаграмм.

Давление диссоциации легколетучего компонента в сплавах сильно зависит от его состава, как правило, понижаясь с уменьшением концентрации этого компонента, как, например, для системы In–As (давление диссоциации мышьяка понижается почти на четыре порядка с уменьшением концентрации мышьяка в интервале от 100 до 20% ). В результате давление диссоциации летучего компонента в соединении оказывается намного меньше давления диссоциации над чистым компонентом при той же температуре.

Это обстоятельство используется в двухтемпературной схеме получения этого соединения. В одной печи создаются две температурные зоны.

10Тем не менее, для соединений, в частности AIII BV , с узкой областью гомогенности и большинства соединений, в частности AIV BVI , со средней шириной области гомогенности применяется понятие конгруэнтно плавящихся соединений, так как отклонения реальной температуры плавления соединения от температуры плавления соединения стехиометрического состава незначительны.

Рис. 4.19. P дис − T сечение P дис − T X диаграммы состояния системы Pb–S. 1 -

трехфазная линия; 2 - PS 2 чистой серы над PbS+S2 ; 3 - PS 2 над PbS+Pb.

Одна имеет температуру T 1, равную температуре кристаллизации соединения. Здесь помещают контейнер с расплавом. Во второй зоне помещают чистый летучий компонент соединения - As. Температура T 2 во второй зоне поддерживается равной температуре, при которой давление диссоциации летучего компонента в чистом виде равно давлению диссоциации этого компонента в соединении при температуре T 1. В результате в первой зоне давление паров летучего компонента над соединением равно его парциальному давлению диссоциации в соединении, что предотвращает улетучивание этого компонента из расплава и обеспечивает кристаллизацию соединения заданного состава.

На рис. 4.19 приведена P T проекция фазовой диаграммы Pb–S.

Сплошной линией показана линия трехфазного равновесия твердой, жидкой и газообразной фаз, ограничивающая область устойчивости твердого соединения; пунктиром - изоконцентрационные линии в пределах области гомогенности. Изоконцентрационные линии показывают составы с равным отклонением от стехиометрии (одинаковые составы) в сторону избытка свинца (проводимость n -типа) или в сторону избытка серы (проводимость p -типа), равновесные при данных значениях температуры и давления паров серы. Линия n = p соответствует значениям температуры и давления PS 2 , при которых твердая фаза имеет строго стехиометрический состав. Она пересекает трехфазную линию при температуре, которая является температурой плавления соединения стехиометрического состава. или в сторону избытка серы (проводимость p -типа) .

Как видно из рис. 4.19, температура плавления соединения стехиометрического состава ниже максимальной температуры плавления, которую имеет сплав с избытком свинца по сравнению с формульным составом. Видна резкая зависимость состава кристалла от парциального давления паров летучего компонента. В области высоких температур все кривые, соответствующие разным составам, приближаются к линии n = p . С понижением температуры разница между равновесными давлениями, соответствующими разным составам, увеличивается. Этим объясняется трудность получения сплава заданного состава непосредственно при кристаллизации, проходящей при высоких температурах. Поскольку кривые парциального давления для разных составов близки, небольшие случайные отклонения давления паров летучего компонента могут привести к ощутимому изменению состава твердой фазы.

Если же кристалл после выращивания подвергнуть длительному отжигу при более низких температурах и таком давлении, что изоконцентрационные линии для разных составов резко расходятся, то состав кристалла можно довести до заданного. Этим часто пользуются на практике.

) — графическое изображение состояний термодинамической системы в пространстве основных параметров состояния - температуры T , давления p и состава x .

Описание

Фазовые диаграммы позволяют узнать, какие фазы (т. е. однородные подсистемы, отличающиеся строением и/или свойствами от других) могут присутствовать в данной системе при данных условиях и составе. Для сложных систем, состоящих из многих фаз и компонентов, построение диаграмм состояния по экспериментальным данным и данным термодинамического моделирования является важнейшим способом предсказания поведения в ходе различных процессов. Анализ относительного расположения полей, разделяющих их поверхностей и линий, а также точек сочленения последних позволяет однозначно и наглядно определять условия фазовых равновесий, появления в системе новых фаз и химических соединений, образования и распада жидких и твердых растворов и т. п.

Диаграммы состояния используют в материаловедении, металлургии, нефтепереработке, химической технологии (в частности, при разработке методов разделения веществ), производствах электронной техники и микроэлектроники и др. С их помощью подбирают условия промышленного синтеза веществ, определяют направленность процессов, связанных с фазовыми переходами, осуществляют выбор режимов термообработки, отыскивают оптимальные составы фаз и т. п.

Фазовые диаграммы однокомпонентных систем изображаются на плоскости в координатах p–T . На них присутствуют поля, отвечающие существованию той или иной фазы вещества (газообразной, жидкой, различных твердых модификаций), разделенные линиями фазового равновесия, вдоль которых возможно сосуществование граничащих фаз. Места, где сходятся три различные линии фазовых равновесий, образуют так называемые тройные точки, в которых могут сосуществовать три фазы. Это максимальное число фаз, способных равновесно сосуществовать в однокомпонентных системах.

Число фаз, присутствующих в данной точке фазовой диаграммы, определяется правилом фаз Гиббса и составляет n + 2 – f , где n - число компонентов, т. е. тех веществ, количество которых в системе может изменяться независимо от остальных, число 2 отвечает давлению и температуре (таким образом, n + 2 есть число параметров, задающих состояние системы, а f - число степеней свободы, т. е. число тех обобщенных сил (давление, температура, химические потенциалы компонентов), которые можно независимо варьировать в некоторых пределах, не меняя при этом равновесного фазового состава.

Например, внутри полей однокомпонентной фазовой диаграммы, где присутствует единственная фаза, можно независимо варьировать давление и температуру, а тройная точка является так называемой точкой нонвариантного равновесия.

Кроме того, на фазовой диаграмме однокомпонентной системы могут изображаться метастабильные фазы, т. е. фазы, не являющиеся равновесными, но способные существовать в определенной области параметров в течение длительного времени вследствие кинетической стабильности, а также критическая точка - точка на линии равновесия жидкость–газ, после которой исчезает скачкообразное различие свойств этих фаз, и понятие фазового перехода теряет смысл.

Помимо температуры и давления могут рассматриваться и другие параметры состояния системы, например, напряженность магнитного поля (H ). Тогда фазовая диаграмма становится многомерной и рассматриваются различные ее сечения, например H–T , а в правиле фаз число 2 меняется на соответствующее число обобщенных сил (полей).

Фазовые диаграммы многокомпонентных систем также являются многомерными. Удобно изучать их плоские сечения, такие, как температура-состав и давлениесостав. Для изобарно-изотермических сечений фазовых диаграмм трехкомпонентных систем, описывающих зависимость фазового состава системы только от ее компонентного состава, используют так называемые треугольники Гиббса.

Обсужденные выше общие положения применимы и к многокомпонентным фазовым диаграммам. Пример широко используемых в материаловедении изобарных (T–x ) сечений двухкомпонентной фазовой диаграммы представлен на рис. Поля таких диаграмм могут отвечать одной или двум сосуществующим фазам, включающим расплав компонентов, твердые фазы чистых компонентов или их соединений промежуточного состава, фазы твердых растворов.

Соотношение фаз в поле, отвечающем двум фазам, определяют по правилу рычага - оно обратно пропорционально соотношению расстояний по горизонтали до ограничивающих поле линий фазовых равновесий, а координаты пересечения горизонтали с этими линиями определяют компонентный состав сосуществующих фаз.

Среди важных элементов T–x сечений двухкомпонентных диаграмм следует упомянуть линию ликвидуса, выше которой наличествует только жидкая фаза; линию солидуса, ниже которой присутствует только твердая фаза, эвтектические точки (точки конгруэнтного плавления), общие для солидуса и ликвидуса (на изломе последнего), и перитектические точки (точки инконгруэнтного плавления, т. е. плавления с частичным разложением твердой фазы) на кривой ликвидуса, в которых могут сосуществовать жидкая фаза и две твердых фазы, а также соответствующие горизонтальные линии эвтектических и перитектических превращений.

Для фаз, состоящих из наноразмерных частиц, может существовать зависимость физических свойств от размера, поэтому фазовую диаграмму иногда заполняют шкалой дисперсности.

Иллюстрации


Авторы

  • Гольдт Илья Валерьевич
  • Иоффе Илья Нафтольевич

Источники

  1. Аносов В. Я., Погодин С. А. Основные начала физико-химического анализа. - М.–Л.: Изд-во АН СССР, 1947. - 876 с.
  2. Химическая энциклопедия. - М.: Советская энциклопедия, 1988.

Фазой называется термодинамическое равновесное состояние вещества, отличающееся по физическим свойствам от других возможных равновесных состояний того же вещества. Переход вещества из одной фазы в другую – фазовый переход - всегда связан с качественными изменениями свойств тела. Примером фазовых переходов могут служить изменения агрегатного состояния. Но понятие «фазовый переход» шире, т.к. оно включает и переход вещества из одной модификации в другую при сохранении агрегатного состояния (полиморфизм), например, превращение алмаза в графит.

Различают два вида фазовых переходов:

Фазовый переход 1 рода – сопровождается поглощением или выделением теплоты, изменением объема и протекает при постоянной температуре. Примеры: плавление, кристаллизация, испарение, сублимация (возгонка) и др.

Фазовые переходы 2 рода – протекают без выделения или поглощения тепла, с сохранением величины объема, но скачкообразным изменением теплоемкости. Примеры: переход ферромагнитных минералов при определенных значениях давления и температуры в парамагнитное состояние (железо, никель); переход некоторых металлов и сплавов при температуре близкой к 0 0 К в сверхпроводящее состояние (ρ = 0 Ом∙м) и др.

Для химически однородного вещества понятие фазы совпадает с понятием агрегатное состояние. Рассмотрим для такой системы фазовые превращения, используя для наглядности диаграмму состояния. На ней в координатах р и Т задается зависимость между температурами фазовых переходов и давлением. Эти зависимости в виде кривых испарения (ОИ), плавления (ОП) и сублимации (ОС) и образуют диаграмму состояния.

Точка О пересечения кривых определяет условия (значения Т и р), при которых все три агрегатные состояния вещества находятся в термодинамическом равновесии.

По этой причине она называется тройной точкой. Например, тройная точка воды является одной из реперных точек температурной шкалы Цельсия (0 0 С). Как следует из уравнения Клапейрона – Клаузиуса характер зависимости Т =f(р) для перехода твердое тело – жидкость (кривые ОП) может быть разным: Если вещество при переходе в жидкую фазу увеличивает объем (вода, висмут, германий, чугун …), то ход этой зависимости представлен на рис. 2а. Для веществ, уменьшающих объём при переходе в жидкую фазу, зависимость имеет вид показанный на рис. 2б.

Кривая испарения заканчивается критической точкой – К . Как видно из диаграммы, существует возможность непрерывного перехода жидкости в газообразную фазу без пересечения кривой испарения, т.е. без присущих такому переходу фазовых превращений.

При давлении меньшим, чем р тр.тчк. , вещество может существовать только в двух фазах: твердой и газообразной. Причем, при температурах, меньших Т тр.тчк. , возможен переход из твердого состояния в газ минуя жидкую фазу. Такой процесс называется сублимацией или возгонкой. Удельная теплота сублимации

τ суб = λ пл +r исп

ТВЕРДЫЕ ТЕЛА.

Твердое тело, агрегатное состояние вещества, для которого характерно наличие значительных сил межмолекулярного взаимодействия, стабильность формы и объема. Тепловое движение частиц твердого тела представляет собой небольшие по амплитуде колебания около положений равновесия. Различают кристаллическое и аморфное строение твердых тел.

Характерной особенностью микроструктуры кристаллов является пространственная периодичность их внутренних электрических полей и повторяемость в расположении кристаллообразующих частиц – атомов, ионов и молекул (дальний порядок). Частицы чередуются в определенном порядке вдоль прямых линий, которые называются узловыми. В любом плоском сечении кристалла две пересекающихся системы таких линий образуют совокупность совершенно одинаковых параллелограммов, которые плотно, без зазоров покрывают плоскость сечения. В пространстве пересечение трех некомпланарных систем таких линий образует пространственную сетку, которая разбивает кристалл на совокупность совершенно одинаковых параллелепипедов. Точки пересечения линий, образующих кристаллическую решетку называются узлами. Расстояния между узлами вдоль какого-то направления называется трансляциями или периодами решетки. Параллелепипед, построенный на трех некомпланарных трансляциях, называется элементарной ячейкой или параллелепипедом повторяемости решетки. Важнейшим геометрическим свойством кристаллических решеток является симметрия в расположении частиц по отношению к определенным направлениям и плоскостям. По этой причине, хотя и существует несколько способов выбора элементарной ячейки, для данной кристаллической структуры, выбирают ее так, чтобы она соответствовала симметрии решетки.

Существует два признака, по которым классифицируются кристаллы: а) кристаллографический – по геометрии кристаллической решетки и б) физический – по характеру взаимодействия частиц, расположенных в узлах кристаллической решетки и их природе.

Геометрия кристаллических решеток и их элементарных ячеек определяется количеством элементов симметрии, использованных при построении данной решетки. Число возможных видов симметрии ограничено. Русский кристаллограф Е.С. Федоров (1853 – 1919) показал, что существует всего 230 возможных комбинаций элементов симметрии, которые путем параллельного переноса, отражения и вращения обеспечивают плотную, т.е. без зазоров и щелей упаковку элементарных ячеек в пространстве. Браве показал, что существует всего 14 типов решеток, которые различаются по виду переносной симметрии. Различают примитивные (простые), базоцентрированные, обьемноцентрированные и гранецентрированные решетки Браве. По форме ячейки в зависимости от углов между ее гранями α, β и γ и соотношением между длиной ребер а, б и с эти 14 типов решеток образуют семь кристаллических систем (сингоний): кубическую, гексогональную, тетрагональную, тригональную или ромбоэдрическую, ромбическую, моноклинную и тригональную.

По характеру взаимодействия частиц, расположенных в узлах кристаллической решетки и их природе кристаллы делятся на четыре типа: ионные, атомные, металлические и молекулярные

Ионные – в узлах кристаллической решетки располагаются ионы противоположных знаков; взаимодействие обусловлено электростатическими силами притяжения (ионная или гетерополярная связь).

Атомные – в узлах кристаллической решетки располагаются нейтральные атомы, удерживающиеся в узлах гомеополярными, или ковалентными связями.

Металлические – в узлах кристаллической решетки располагаются положительные ионы металла; свободные электроны образуют, так называемый, электронный газ, который и обеспечивает связь ионов.

Молекулярные – в узлах кристаллической решетки располагаются нейтральные молекулы, силы взаимодействия между которыми обусловлены незначительным смещением электронного облака атома (поляризационные или ван-дер-ваальсовские силы).

Кристаллические тела можно разделить на две группы: монокристаллы и поликристаллы. Для монокристаллов наблюдается единая кристаллическая решетка в объеме всего тела. И хотя внешняя форма монокристаллов одного вида может быть разной, углы между соответствующими гранями будут всегда одинаковыми. Характерной особенностью монокристаллов является анизотропия механических, тепловых, электрических, оптических и др. свойств.

Монокристаллы нередко встречаются в естественном состоянии в природе. Например, большинство минералов – хрусталь, изумруды, рубины. В настоящее время в производственных целях многие монокристаллы выращивают искусственно из растворов и расплавов - рубины, германий, кремний, арсенид галия.

Один и тот же химический элемент может образовать несколько, отличающихся по геометрии, кристаллических структур. Это явление получило название - полиморфизма. Например, углерод – графит и алмаз; лед пять модификаций и др.

Правильная внешняя огранка и анизотропия свойств, как правило, не проявляются для кристаллических тел. Это объясняется тем, что кристаллические твердые тела обычно состоят из множества беспорядочно ориентированных мелких кристалликов. Такие твердые тела называются поликристаллическими. Связано это с механизмом кристаллизации: при достижении необходимых для этого процесса условий, очаги кристаллизации одновременно возникают во множестве мест исходной фазы. Зародившиеся кристаллы расположены и ориентированы друг по отношению к другу совершенно хаотически. По этой причине по окончании процесса мы получаем твердое тело в виде конгломерата сросшихся мелких кристалликов – кристаллитов.

ДЕФФЕКТЫ В КРИСТАЛАХ.

Реальные кристаллы обладают рядом нарушений идеальной структуры, которые называются дефектами кристаллов:

а) точечные дефекты

    дефекты Шотки (незанятые частицами узлы);

    дефекты Френкеля (смещение частиц из узлов в междуузлия);

    примеси (внедренные чужеродные атомы);

б) линейные – дислокации краевые и винтовые локальные нарушения в регулярности расположения частиц, из-за недостроенности отдельных атомных плоскостей, или в последовательности их застройки;

в) плоскостные – границы между зеркалами, ряды линейных дислокаций.

АМОРФНЫЕ ТВЕРДЫЕ ТЕЛА.

Аморфные твердые тела по многим своим свойствам и главным образом по микроструктуре следует рассматривать как сильно переохлажденные жидкости с очень высоким коэффициентом вязкости. С энергетической точки зрения различие между кристаллическими и аморфными твердыми телами хорошо прослеживаются в процессе отвердевания и плавления. Кристаллические тела имеют точку плавления – температуру, когда вещество устойчиво существует в двух фазах – твердой и жидкой (рис1). Переход молекулы твердого тела в жидкость означает, что она приобретает дополнительно три степени свободы поступательного движения. Т.о. единица массы вещества при Т пл. в жидкой фазе имеет большую внутреннюю энергию, чем такая же масса в твердой фазе. Кроме того, меняется расстояние между частицами. Поэтому в целом количество теплоты необходимое для превращения единицы массы кристалла в жидкость будет:

λ = (U ж -U k) + P (V ж -V k),

где λ – удельная теплота плавления (кристаллизации), (U ж -U k) – разность внутренних энергий жидкой и кристаллической фаз, Р – внешнее давление, (V ж -V k) – разность удельных объемов. Согласно уравнению Клайперона - Клаузиуса температура плавления зависит от давления:

.

Видно, что если (V ж -V k)> 0, то > 0, т.е. с ростом давления температура плавления повышается. Если же объем вещества при плавлении уменьшается (V ж -V k)< 0 (вода, висмут), то рост давления приводит к понижению Т пл.

У аморфных тел теплота плавления отсутствует. Нагревание приводит к постепенному увеличению скорости теплового движения и уменьшению вязкости. На графике процесса имеется точка перегиба, которую условно называют температурой размягчения.