Примеры использования нанотехнологий в современной жизни. Нанотехнологии в жизни человека

ВИЗИТКА ПРОЕКТА

Возрастная группа: 8-10 классы.

Актуальность: нанотехнологии тесно связались с современной жизнью человека.

Цель: расширение представлений о нанотехнологиях и областях их применения.

Местоположение проекта: биология, физика, химия, медицина, военное дело.

Вид проекта: групповой.

Продолжительность работы над проектом: от 2 недель.

Проблемная ситуация

Область науки и техники, именуемая нанотехнологией, появилась сравнительно недавно. Перспективы этой науки грандиозны. Сама частица «нано» означает одну миллиардную долю какой-либо величины. Например, нанометр — одна миллиардная доля метра. Эти размеры схожи с размерами молекул и атомов. Точное определение нанотехнологий звучит так: нанотехнологии – это технологии, манипулирующие веществом на уровне атомов и молекул (поэтому нанотехнологии называют также молекулярной технологией). Толчком к развитию нанотехнологий послужила научная идея о том, что с точки зрения физики нет никаких препятствий к тому, чтобы создавать вещи прямо из атомов.
Уже сегодня мы можем пользоваться преимуществами и новыми возможностями нанотехнологий в:

  • медицине;
  • фармакологии;
  • экологии;
  • информатике, системах информационной безопасности;
  • системах связи;
  • автомобильной, тракторной и авиационной технике;
  • безопасности дорожного движения;
  • новых системах навигации.

Далее учитель или учителя различных предметных областей предлагают учащимся разделиться на группы в соответствии с их познавательными интересами и исследовать нанотехнологии в выбранной ими области знаний.

Проектное задание: изучить историю возникновения нанотехнологий, идею нанотехнологий, применение нанотехнологий в различных областях знаний, пофантазировать и предложить еще варианты применения нанотехнологий.

Возможный продукт проекта:

  • реферат;
  • доклад;
  • статья;
  • презентация.

Источники информации для учащихся:

  1. Кобаяси Н. Введение в нанотехнологию. М.: Бином, 2005.
  2. Чаплыгин А. Нанотехнологии в электронике. М.: Техносфера, 2005.

Необходимые ресурсы для выполнения проектного задания: образцы чешуи щуки, сканер, микроскопы.

Организация проектной деятельности (в приложении).

Основные этапы Деятельность учащихся на данном этапе Деятельность учителя на данном этапе Используемые технологии обучения
1. Ориенти-ровочный Ориентирование в тематическом поле, определение темы проекта, поиск и анализ проблемы, постановка цели проекта, выбор названия проекта Консультирование Проблемно-ориентированное обучение, case-study, технология творческих мастерских
2. Основной Разработка, обсуждение возможных вариантов проекта, сбор и изучение информации, распределение обязанностей в групповом проекте Консультирование Метод проектов, проблемно-ориентированное обучение
3. Рефлек-сивный Анализ результатов выполнения проекта, самооценка качества выполнения проекта, внесение необходимых изменений Формирование групп рецензентов, «внешних» экспертов Метод проектов
4. Обобщаю-щий, презентационный Подготовка текста и защита проекта.

Экспертиза проектов одноклассников

Индивидуальные и групповые консультации по содержанию и правилам оформления проектных работ.

Экспертное заключение.

Подведение итогов, анализ выполненной работы

Дискуссия, семинар, круглый стол

Оценка результативности. Происходит путем коллективного обсуждения и самооценок. Учитель напоминает критерии, по которым ребята оценивают свою работу и работу других: аргументированность, убедительность, активность, наличие собственного мнения.

Скачать все материалы проекта

Благодаря инновационным технологиям у человечества появилась возможность изучить окружающий мир на более «мелком» уровне. Нанотехнологии применяются в разных сферах деятельности. Микроскопические частицы, или как их сейчас принято называть наночастицы , могут быть синтезированы из разнообразных материалов. Размеры указанных частиц не превышают 100 нм.

Уникальные возможности наномира человечество использует с древних времен. К примеру, исторический шедевр Кубок Ликурга создан древнеримскими мастерами. Уникальная структура стеклянного кубка удивляет даже современных мастеров. Если кубок освещать снаружи он будет зеленым, а если изнутри - оранжево-красным. В чем причина? Все дело в том, что в структуру стекла вкраплены наночастицы благородных металлов (серебро и золото).

Наночастицы и медицина

Первая наночастица описана А. Эйнштейном еще в 1905 году. Он доказал, что молекула сахарозы имеет размер около 1 нм. Наночастицы легко преодолевают клеточные мембраны, поэтому они способны проникнуть в любую точку нашего организма. Это уникальное свойство используется в практической медицине для диагностики разнообразных заболеваний.

К примеру, наночастицы используются для диагностики раковых заболеваний, микрочастицы закрепляются на раковых клетках, по их повышенной концентрации можно определить локализацию канцерогенных клеток в организме. Нанотехнологии позволяют доставлять лекарственные средства в точно установленное место. С помощью наночастиц можно ускорить процесс заживления ран, ингибировать рост опухолей.

Как видим, наша жизнь тесно связана с этими микроскопическими частицами. Доказано, что наночастицы могут выступать в роли катализаторов и адсорбентов. Уже сегодня нанотехнологии используются для создания ультратонких и сверхпрочных защитных покрытий. Все же большинство научных исследователей придерживаются мнения, что воздействие наночастиц на организм человека еще мало изучено, поэтому праздновать какой-либо успех и бить литавры еще рано.

Наночастицы и их исследование

Основой для изучения всех возможностей выше представленного материала является качественное лабораторное оборудование Ноriba (анализаторы размеров частиц). В настоящее время все наночастицы можно классифицировать по нескольким показателям:

По базовому веществу;

По происхождению (натуральное, искусственное);

По типу многомерности.

Современное лабораторное оборудование фирмы Ноriba позволяет определить все свойства наночастиц. Наша компания представляет вашему вниманию следующие модели лазерных анализаторов известной фирмы Ноriba - SZ-100V2 , LA-960V2 и LА-300 . Итак, лазерный анализатор SZ-100 используют для исследования микрочастиц размером от 0,3 нм до 8 мкм, ζ-потенциала и молекулярного веса. Принцип измерения основан на фото-корреляционной спектроскопии. Лазерный анализатор LA-950 - уникальный аппарат, который может работать на высокой скорости. С помощь указанного оборудования можно проводить исследования с применением циркулярной системы в жидкой среде. Лазерный анализатор LА-300 оснащен автоматическим насосом, может работать с лазерной дифракцией.

ООО «РВС» является постоянным партнером торгового бренда Ноriba. Специалисты компании регулярно проходят повышение квалификации. При необходимости грамотно проконсультируют вас, помогут определиться с моделью лазерного анализатора. Мы реализуем только качественную продукцию.

С каждым днем мы приближаемся к неизбежной революции, которую несут в себе нанотехнологии. Мы создаем новые приборы, получаем уникальные материалы, о которых раньше не задумывались. Применение нанотехнологий в быту позволило изменить форму привычных для нас предметов. В результате этого мы получили совсем иные, но полезные свойства вещества. Окружающая нас реальность становится менее опасной и наиболее благоприятной для комфортной жизни. Наглядный пример: уменьшение привычных габаритов используемых электрических приборов до размеров наночастиц, незаметных человеческому глазу. Компьютеры становятся меньше в размерах, но намного производительнее. Нанотехнологии в быту и в промышленности позволили значительно изменить все вокруг нас.

Возможно ли создать такую форму искусственного интеллекта, который смог бы удовлетворить любые наши потребности? Ответ кроется в рациональном применении новейших разработок. Нанотехнологии — это путь в будущее, так как они затрагивают все аспекты нашей жизни. Использование нанотехнологий дает много возможностей, но и вызывает ряд опасений.

Окно в наномир

Электронный микроскоп позволяет заглянуть в микромир. Без специальной аппаратуры нанотехнологии в быту сразу заметить очень трудно, так как они настолько малы, что неразличимы невооруженным глазом. Именно в таких масштабах вещества проявляют самые необычные и неожиданные свойства. Использование таких свойств обещает уникальную технологическую революцию. Они дают радикально новые возможности, такие как управлять телом человека и окружающей средой.

История появления нанотехнологий

Все начинается в 80-х годах XX века с изобретением инструмента под названием сканирующий (СТМ). Профессор Джеймс Джимзевский провел всю свою профессиональную жизнь в мире наноразмеров. Он является одним из первых в мире людей, получивших возможность исследовать материю на уровне невероятно малых величин, миллионных долей миллиметра. Эти микроскопы позволяют изучить поверхность подобно тому, как слепые читают Тогда никто не мог подозревать, насколько пригодятся нанотехнологии в быту и промышленности.

Принцип работы с наночастицами

Сканирующий микроскоп использует зонд, представляющий собой иглу толщиной в 1 атом. Когда она приближается всего на несколько нанометров к образцу, происходит обмен электронами с ближайшей наночастицей. Это явление называется эффектом туннеля. Система управления фиксирует изменение величины туннельного тока, и вот уже на основе этой информации идет более точное построение топографии поверхности исследуемого образца. Программное обеспечение позволяет преобразовать полученные данные в изображение, которое дает ученым ключ к новому миру, используя нанотехнологии в быту и других отраслях.

Как утверждает Джеймс Джимзевский, благодаря сканирующему электронному микроскопу ученые впервые получили изображения атомов и молекул и смогли изучить их форму. Это стало настоящей революцией в науке, ведь ученые начали смотреть на многие вещи совсем по-другому, обратив внимание на свойства отдельных атомов, а не миллионы и миллиарды частиц, как это было в прошлом.

Первые открытия

Использование новых технологий привело к поразительному открытию. Когда прибор приближался к атому на расстояние в 1 нанометр, между ним и атомом возникала связь. Эта особенность позволила найти способ перемещать отдельные микрочастицы. Благодаря такому открытию появилась возможность использовать нанотехнологии для комфортного быта.

Как пояснил Джеймс Джимзевский, профессор университета Калифорнии, туннельный сканирующий микроскоп позволил практически прикасаться к молекулам и атомам. Ученые впервые смогли манипулировать атомами на поверхности вещества и создавать структуры, которые раньше нельзя было и представить.

Это новоприобретенное открытие (способность наблюдать и манипулировать мельчайшими частицами, составляющими материю) дало возможность использовать нанотехнологии во всех отраслях без исключения.

Развитие нанотехнологий

Физик и философ Этин Клин считает, что возможность технологического прорыва за счет нанотехнологий вполне реальна, но во многом это строится на энтузиазме ученого.

Как говорит физик и философ Этин Клин, с момента экспериментального подтверждения существования атомов до момента получения возможности ими манипулировать прошло меньше 100 лет. Перед учеными открываются такие возможности, о которых раньше и подумать не могли. Только благодаря этому правительство всех развитых стран стало проявлять интерес к соответствующим наукам. Все началось с американской инициативы 2002 года, с которой выступили физики Рока и Бенбридж. Эти ученые выступили с сумасшедшей идеей о том, что благодаря нанотехнологиям человечество сможет решить все стоящие перед ним проблемы.

Это заявление стало толчком к началу многочисленных исследований, позволивших реализовать такие передовые направления науки и техники, как микроэлектроника, информатика, ядерно-энергетические исследования, микробиология, лазерная техника, медицина и многое другое.

Нанотехнологии: примеры

В быту есть столько незаметных, но очень важных веществ, о присутствии которых мы даже не подозреваем! Давайте рассмотрим самые яркие примеры:


  • Зубная паста. Ранее никто не задумывался о том, почему очищающее средство для зубов бывает разным. Это все объясняется наличием определенных наночастиц. Например, гидроксиапатит кальция, который незаметен невооруженным глазом, помогает восстановить разрушенную эмаль и защитить зубы от кариеса.

  • Краска для автомобилей. Современные автомобильные краски, благодаря наночастицам, способны перекрывать неглубокие царапины и другие полости, образовавшиеся на кузове. В их состав входят микроскопические шарики, которые и обеспечивают такой эффект.

НАНОТЕХНОЛОГИИ В НАШЕЙ ЖИЗНИ

Мусеридзе К., Аджави Э., Мусина К., Симонян Р. Я.

ГБОУ СОШ № 1005 «Алые паруса», Москва, Россия

Актуальность этой темы вызвана «внедрением» нанотехнологий в нашу жизнь, ведь в наши дни ни одна наука не обходится без нанотехнологий. В настоящее время наука нанотехнология динамично развивается, набирая обороты. Методы изучения и управления материей на молекулярном уровне для производств материалов совершенствуются, у устройств и систем появляются новые технические, функциональные и потребительские свойства. Нанотехнологии вошли в повседневный быт. Электроника, медицина, косметология, строительство, – отнюдь не полный перечень применения данных технологий на уровне обывателя. И нет такого человека, который не слышал бы о них хоть краем уха, но все ли люди знают, что это такое?

Нанотехноло́гия - область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомной структурой путём контролируемого манипулирования отдельными атомами и молекулами .

Цель нашего исследования – выявить самые передовые направления в применении нанотехнологий, показать значение нанотехнологий в жизни человека и рассказать о них простым и понятным для всех языком, популяризировать достижения российских ученых в этой области.

Сначала мы расскажем о применении нанотехнологий в медицине. Наномедицина является одним из активно развивающихся научных направлений науки и подразумевает слежение, исправление, генетическую коррекцию и контроль биологических систем организма человека на молекулярном уровне, используя наноустройства, наноструктуры и информационные технологии .

Наноэлектроника – это область науки и техники, которая включает в себя совокупность средств, способов и методов человеческой деятельности, направленной на теоретическое и практическое исследование, моделирование и т.д. .

В текстиле нанотехнологии помогают одежде приобретать водонепроницаемость, грязеотталкивание, теплопроводность и т.д. Например, наноматериалы могут иметь в своем составе наночастицы и нановолокна с другими добавками, что помогает обеспечить всеми этими свойствами вашу футболку.

«Функциональная» еда – это натуральные мясные протеины и пептиды, которые, по сути, являются самым характерным примером высокотехнологичной еды нового поколения .

    Нанотехнология. – URL :

    Семячкина, Ю. А., Клочков А. Я. Нанотехнологии современности: пищевая промышленность [Текст] // Технические науки: традиции и инновации: материалы Междунар. науч. конф. (г. Челябинск, январь 2012 г.). - Челябинск: Два комсомольца, 2012. - С. 166-167.

    Функциональные продукты – это многофункциональная еда // Food News Time [Электронный ресурс] Режим доступа:

Ю. СВИДИНЕНКО, инженер-физик

Наноструктуры заменят традиционные транзисторы.

Компактная учебная нанотехнологическая установка "УМКА" позволяет производить манипуляции с отдельными группами атомов.

При помощи установки "УМКА" удается рассмотреть поверхность DVD.

Для будущих нанотехнологов уже выпущен учебник.

Появившиеся в последней четверти ХХ века нанотехнологии стремительно развиваются. Едва ли не каждый месяц появляются сообщения о новых проектах, казавшихся еще год-другой назад абсолютной фантастикой. По определению, данному пионером этого направления Эриком Дрекслером, нанотехнология - "ожидаемая технология производства, ориентированная на дешевое получение устройств и веществ с заранее заданной атомарной структурой". Это значит, что она оперирует с отдельными атомами для того, чтобы получить структуры с атомарной точностью. В этом коренное отличие нанотехнологий от современных "объемных" bulk-технологий, которые манипулируют макрообъектами.

Напомним читателю, что нано - приставка, обозначающая 10 -9 . На отрезке длиной в один нанометр можно расположить восемь атомов кислорода.

Нанообъекты (например, наночастицы металлов), как правило, имеют физические и химические свойства, отличные и от свойств более крупных объектов из того же материала и от свойств отдельных атомов. Скажем, температура плавления частиц золота размером 5-10 нм на сотни градусов ниже температуры плавления куска золота объемом 1 см 3 .

Исследования, проводимые в наноразмерном диапазоне, лежат на стыке наук, часто изыскания в области материаловедения затрагивают области биотехнологий, физики твердого тела, электроники.

Ведущий мировой специалист в области наномедицины Роберт Фрайтас сказал: "Будущие наномашины должны состоять из миллиардов атомов, поэтому их проектирование и построение потребуют усилий команды специалистов. Каждая конструкция наноробота потребует объединения усилий нескольких исследовательских коллективов. В проектировании и построении самолета "Боинг-777" участвовало множество коллективов во всем мире. Наномедицинский робот будущего, состоящий из миллиона (или даже больше) рабочих частей, по сложности конструкции будет не проще самолета".

НАНОПРОДУКТЫ ВОКРУГ НАС

Наномир сложен и пока еще сравнительно мало изучен, и все же не столь далек от нас, как это казалось несколько лет назад. Большинство из нас регулярно пользуются теми или иными достижениями нанотехнологий, даже не подозревая об этом. Например, современная микроэлектроника уже не микро-, а нано: производимые сегодня транзисторы - основа всех чипов - лежат в диапазоне до 90 нм. И уже запланирована дальнейшая миниатюризация электронных компонентов до 60, 45 и 30 нм.

Более того, как недавно заявили представители компании "Хьюлетт-Паккард", транзисторы, изготавливаемые по традиционной технологии, будут заменены наноструктурами. Один такой элемент - это три проводника шириной в несколько нанометров: два из них параллельны, а третий расположен под прямым углом к ним. Проводники не соприкасаются, а проходят, как мосты, один над другим. При этом с верхних проводников на нижние спускаются молекулярные цепочки, сформированные из материала нанопроводников под воздействием приложенного к ним напряжения. Построенные по этой технологии схемы уже продемонстрировали способность хранить данные и выполнять логические операции, то есть - заменять транзисторы.

С новой технологией размеры деталей микросхем опустятся существенно ниже планки в 10-15 нанометров, в масштабы, где традиционные полупроводниковые транзисторы просто физически не могут работать. Вероятно, уже в первой половине следующего десятилетия появятся серийные микросхемы (пока еще традиционные, кремниевые), в которые будет встроено некоторое количество наноэлементов, созданных по новой технологии.

Компания "Кодак" в 2004 году выпустила бумагу для струйных принтеров Ultima. Она имеет девять слоев. Верхний слой состоит из керамических наночастиц, которые делают бумагу более плотной и блестящей. Во внутренних слоях расположены пигментные наночастицы размерами 10 нм, улучшающие качество печати. А быстрой фиксации краски способствуют включенные в состав покрытия полимерные наночастицы.

Директор Института нанотехнологий США Чэд Миркин считает, что "нанотехнологии перестроят все материалы заново. Все материалы, полученные с помощью молекулярного производства, будут новыми, так как до сих пор у человечества не было возможности разрабатывать и производить наноструктуры. Сейчас мы используем в промышленности только то, что нам дает природа. Из деревьев мы делаем доски, из проводящего металла - проволоку. Нанотехнологический подход состоит в том, что мы будем перерабатывать практически любые природные ресурсы в так называемые "строительные блоки", которые составят основу будущей промышленности".

Сейчас мы уже видим наступление нанореволюции: это и новые компьютерные чипы, и новые ткани, на которых не остается пятен, и использование наночастиц в медицинской диагностике (см. также "Наука и жизнь" №№ , , 2005 г.). Даже косметическая индустрия заинтересована в наноматериалах. Они могут создать в косметике много новых нестандартных направлений, которых не было раньше.

В наноразмерном диапазоне практически любой материал проявляет уникальные свойства. Например, известно, что ионы серебра обладают антисептической активностью. Значительно более высокой активностью обладает раствор наночастиц серебра. Если обработать этим раствором бинт и приложить его к гнойной ране, воспаление пройдет и рана заживет быстрее, чем с использованием обычных антисептиков.

Отечественный концерн "Наноиндустрия" разработал технологию производства наночастиц серебра, стабильных в растворах и в адсорбированном состоянии. Получаемые препараты обладают широким спектром противомикробного действия. Таким образом, появилась возможность создания целой гаммы продуктов с антимикробными свойствами при незначительном изменении технологического процесса производителями существующей продукции.

Наночастицы серебра могут быть использованы для модификации традиционных и создания новых материалов, покрытий, дезинфицирующих и моющих средств (в том числе зубных и чистящих паст, стиральных порошков, мыла), косметики. Покрытия и материалы (композитные, текстильные, лакокрасочные, углеродные и другие), модифицированные наночастицами серебра, могут быть использованы в качестве профилактических антимикробных средств защиты в местах, где возрастает опасность распространения инфекций: на транспорте, на предприятиях общественного питания, в сельскохозяйственных и животноводческих помещениях, в детских, спортивных, медицинских учреждениях. Наночастицы серебра можно использовать для очистки воды и уничтожения болезнетворных микроорганизмов в фильтрах систем кондиционирования воздуха, в бассейнах, душах и других подобных местах массового посещения.

Выпускается аналогичная продукция и за рубежом. Одна из фирм производит покрытия с серебряными наночастицами для лечения хронических воспалений и открытых ран.

Еще один вид наноматериалов - обладающие колоссальной прочностью углеродные нанотрубки (см. "Наука и жизнь" № 5, 2002 г. ; № 6, 2003 г.). Это своеобразные цилиндрические полимерные молекулы диаметром примерно от половины нанометра и длиной до нескольких микрометров. Впервые их обнаружили менее 10 лет назад как побочные продукты синтеза фуллерена С 60 . Тем не менее уже сейчас на основе углеродных нанотрубок создаются электронные устройства нанометровых размеров. Ожидается, что в обозримом будущем они заменят многие элементы в электронных схемах различных приборов, в том числе современных компьютеров.

Впрочем, используют нанотрубки не только в электронике. В продаже уже есть ракетки для тенниса, армированные углеродными нанотрубками для ограничения скручивания и обеспечения большей мощности удара. Применяют их и в некоторых деталях спортивных велосипедов.

РОССИЯ НА РЫНКЕ НАНОТЕХНОЛОГИЙ

Отечественная компания "Nanotechnology News Network" недавно представила в России другую новинку - самоочищающиеся нанопокрытия. Достаточно опрыскать стекло автомобиля специальным раствором с наночастицами диоксида кремния, и на протяжении 50 000 км к нему не будет приставать грязь и вода. На стекле остается прозрачный сверхтонкий слой, на котором воде просто не за что зацепиться, и она скатывается вместе с грязью. В первую очередь новинкой заинтересовались владельцы небоскребов - на мытье фасадов этих зданий уходят огромные деньги. Существуют такие составы для покрытия керамики, камня, дерева и даже одежды.

Необходимо сказать, что некоторые российские организации уже успешно выступают на международном нанотехнологическом рынке.

Концерн "Наноиндустрия", например, имеет в своем багаже ряд нанотехнологических продуктов, применимых в различных областях промышленности. Это восстановительный состав "РВС" и наночастицы серебра для биотехнологий и медицины, промышленная нанотехнологическая установка "ЛУЧ-1,2" и учебная нанотехнологическая установка "УМКА".

Состав "РВС", который может уберечь от износа и восстановить практически любые трущиеся металлические поверхности, готовят на основе адаптивных наночастиц. Это средство позволяет создавать модифицированный высокоуглеродистый железосиликатный защитный слой толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей (например, в парах трения в двигателях внутреннего сгорания). Залив такой состав в картер для масла, можно надолго забыть о проблеме износа мотора. При работе механические части нагреваются от трения, этот нагрев вызывает прилипание металлических наночастиц к поврежденным областям. Избыточное же наращивание вызывает более сильный нагрев, и наночастицы утрачивают свою способность к присоединению. Таким образом в трущемся узле постоянно поддерживается равновесие, и детали практически не изнашиваются.

Особый интерес представляет комплекс нанотехнологического оборудования "УМКА", который предназначен для проведения демонстрационных, исследовательских и лабораторных работ на атомно-молекулярном уровне в области физики, химии, биологии, медицины, генетики и других фундаменталь ных и прикладных наук. Например, недавно на нем было получено изображение поверхности DVD с разрешением 0,3 мкм, и это еще не предел. Уникальная технология работы на пикоамперных токах позволяет сканировать даже слабопроводящие биологические образцы без предварительного напыления металла (обычно необходимо, чтобы верхний слой образца был проводящим). "УМКА" обладает высокой температурной стабильностью, позволяющей проводить длительные манипуляции с отдельными группами атомов, и высокой скоростью сканирования, позволяющей наблюдать быстропротекающие процессы.

Основная сфера применения комплекса "УМКА" - обучение современным практическим методам работы с наноразмерными структурами. Комплекс "УМКА" включает: туннельный микроскоп, систему виброзащиты, набор тестовых образцов, наборы расходных материалов и инструментов. Умещаются приборы в небольшом кейсе, работают в комнатных условиях и стоят менее 8 тысяч долларов. Управлять экспериментами можно с обычного персонального компьютера.

В январе 2005 года открылся первый российский интернет-магазин, продающий нанотехнологичес кие продукты. Постоянный адрес магазина в Интернете - www.nanobot.ru

ПРОБЛЕМЫ БЕЗОПАСНОСТИ

Недавно было установлено, что шарообразные молекулы С 60 , называемые фуллеренами, могут вызывать серьезные заболевания и вредить окружающей среде. Токсичность водорастворимых фуллеренов при их воздействии на человеческие клетки двух различных типов была установлена исследователями из университетов Райса и Джорджии (США).

Профессор химии Вики Колвин из университета Райса и его коллеги установили, что при растворении фуллеренов в воде формируются коллоиды C 60 , которые при воздействии на клетки кожи человека и клетки карциномы печени вызывают их гибель. При этом концентрация фуллеренов в воде была весьма низкой: ~ 20 молекул C 60 на 1 миллиард молекул воды. Одновременно исследователи показали, что токсичность молекул зависит от модификации их поверхности.

Как предполагают исследователи, токсичность простых фуллеренов C 60 связана с тем, что их поверхность способна производить супероксидные анионы. Эти радикалы повреждают клеточные мембраны и приводят к гибели клеток.

Колвин и его коллеги заявили, что такое негативное свойство фуллеренов можно использовать во благо - для лечения раковых опухолей. Необходимо лишь детально выяснить механизм образования кислородных радикалов. Очевидно, на основе фуллеренов можно будет создать и сверхэффективные антибактериальные препараты.

Вместе с тем опасность применения фуллеренов в продуктах массового потребления представляется ученым вполне реальной.

Видимо, поэтому недавно американская Комиссия по безопасности пищевых продуктов и лекарств (FDA) заявила о необходимости лицензирования и регулирования широкого спектра товаров (пищевые продукты, косметика, лекарства, аппаратура и ветеринария), изготовленных с помощью нанотехнологий и использующих наноматериалы и наноструктуры.

НАНОТЕХНОЛОГИЯМ НУЖНА ПОДДЕРЖКА ГОСУДАРСТВА

К сожалению, в России государственной программы по развитию нанотехнологий до сих пор нет. (В 2005 году нанотехнологической программе США, между прочим, исполнилось пять лет.) Без сомнения, существование централизованной государственной программы по развитию нанотехнологий значительно помогло бы в практической реализации результатов исследований. То, что успешные разработки в области нанотехнологий в стране есть, мы, к сожалению, узнаем из зарубежных источников. Например, летом Институт стандартов США объявил о создании наименьших в мире атомных часов. Как оказалось, над их созданием работал и российский коллектив.

Государственной программы в России нет, а исследователи и энтузиасты есть: за прошлый год Молодежное научное общество (МНО) объединило более 500 молодых ученых, аспирантов и студентов, думающих о будущем своей страны. Для детального изучения проблематики нанотехнологий в феврале 2004 года на базе МНО создана аналитическая компания "Nanotechnology News Network (NNN)", отслеживающая сотни открытых мировых источников в этой области и на сегодня обработавшая свыше 4500 информационных сообщений зарубежных и российских СМИ, статей, пресс-релизов и экспертных комментариев. Созданы сайты www.mno.ru и www.nanonewsnet.ru , с которыми ознакомились более 170 000 граждан России и СНГ.

КОНКУРС МОЛОДЕЖНЫХ ПРОЕКТОВ

В апреле 2004 года совместно с концерном "Наноиндустрия" при поддержке "Юниаструм Банка" был успешно проведен первый Всероссийский конкурс молодежных проектов по созданию отечественной молекулярной нанотехнологии, вызвавший живой интерес российских ученых.

Победители конкурса представили выдающиеся разработки: первое место было присуждено коллективу молодых ученых из РХТУ им. Д. И. Менделеева под руководством кандидата химических наук Галины Поповой, создавшему биомиметические (биомиметика - подражание структурам, существующим в природе) материалы для оптических наносенсоров, молекулярной электроники и биомедицины. Второе место заняла аспирантка Ташкентского государственного педагогического университета им. Низами Марина Фомина, разработавшая систему направленной доставки лекарств к больным тканям, а третье - школьник из Томска Алексей Хасанов, автор технологии создания нанокерамических материалов с уникальными свойствами. Победители получили ценные призы.

При поддержке банка разработан и готовится к изданию научно-популярный учебник "Нанотехнологии для всех", заслуживший высокую оценку ведущих ученых.

Компания NNN, за год ставшая ведущим аналитическим агентством в области нанотехнологии, в декабре 2004 года объявила начало Второго Всероссийского конкурса молодежных проектов, генеральным спонсором которого вновь выступил довольный результатами первого конкурса "Юниаструм Банк". Кроме того, на сей раз спонсором стала и компания "Powercom" - международный производитель источников бесперебойного питания. Активное участие в подготовке и освещении конкурса принимает журнал "Наука и жизнь".

Цель конкурса - привлечь талантливую молодежь к развитию нанотехнологий в своей стране, а не за рубежом.

Победитель конкурса получит нанотехнологическую лабораторию "УМКА". Занявшие второе и третье места будут награждены современными ноутбуками; лучшие участники получат бесплатную подписку на журнал "Наука и жизнь". В качестве призов предусмотрены ремонтно-восстановительные комплекты для автотранспорта на основе наночастиц, подписка на журнал "Универсум" и ежемесячные CD "Мир нанотехнологий".

Направленность проектов чрезвычайно разнообразна: от перспективных наноматериалов для автомобилестроения и авиации до имплантатов и нейротехнологических интерфейсов. Подробные материалы конкурса находятся на сайте www.nanonewsnet.ru .

В декабре 2004 года в городе Фрязино (Московская обл.) прошла первая конференция, посвященная промышленному использованию нанотехнологий, где ученые представили десятки разработок, готовых к внедрению на производстве. Среди них - новые материалы на основе нанотрубок, сверхпрочные покрытия, антифрикционные составы, проводящие полимеры для гибкой электроники, сверхъемкие конденсаторы и т.д.

Нанотехнологии в России набирают ход. Однако, если исследования не будут координироваться государством или комплексной федеральной программой, в лучшую сторону, скорее всего, ничего так и не изменится. Для будущих нанотехнологов уже выпущен учебник.