Механизмы протекания химических реакций в органической химии. Классификация органических реакций и их механизмы

Существуют разные системы классификации органических реакций, которые основаны на различных признаках. Среди них можно выделить классификации:

  • по конечному результату реакции , то есть изменению в структуре субстрата;
  • по механизму протекания реакции , то есть по типу разрыва связей и типу реагентов.

Взаимодействующие в органической реакции вещества подразделяют на реагент и субстрат . При этом считается, что реагент атакует субстрат.

ОПРЕДЕЛЕНИЕ

Реагент - вещество, действующее на объект - субстрат - и вызывающее в нем изменение химической связи. Реагенты делятся на радикальные, электрофильные и нуклеофильные.

ОПРЕДЕЛЕНИЕ

Субстратом , как правило, считают молекулу, которая предоставляет атом углерода для новой связи.

КЛАССИФИКАЦИЯ РЕАКЦИЙ ПО КОНЕЧНОМУ РЕЗУЛЬТАТУ (ИЗМЕНЕНИЮ В СТРУКТУРЕ СУБСТРАТА)

В органической химии различают четыре вида реакций по конечному результату и изменению в структуре субстрата: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять), и перегруппировки (изомеризации ). Такая классификация аналогична классификации реакций в неорганической химии по числу исходных реагентов и образующихся веществ, с изменением или без изменения состава. Классификация по конечному результату основана на формальных признаках, так как стехиометрическое уравнение, как правило, не отражает механизм реакции. Сравним типы реакций в неорганической и органической химии.

Тип реакции в неорганической химии

Пример

Тип реакции в органической химии

Разновидность

и пример

Реакции

1. Соединение

C l 2 + H 2 = 2 H C l

Присоединение по кратным связям

Гидрирование

Гидрогалогенирование


Галогенирование


Гидратация


2. Разложение

2 H 2 O = 2 H 2 + O 2

Элиминирование

Дегидрирование


Дегидрогалогенирование


Дегалогенирование


Дегидратация


3. Замещение

Z n + 2 H C l = ZnCl2+H2

Замещение


4. Обмен (частный случай - нейтрализация)

H 2 S O 4 + 2 N a O H =N a 2 S O 4 + 2 H2 O

частный случай - этерификация


5.Аллотропизация

графит алмаз

P красн. P бел. Pкрасн.⇔P бел.

S ромб. S пласт. Sромб.⇔Sпласт.

Изомеризация

Изомеризация

алканов



п) без замены их другими.

В зависимости от того, какие атомы отщепляются - соседние C C или изолированные двумя-тремя или более атомами углерода –C –C–C–C –, –C –C–C–C–C –, могут образовываться соединения с кратными связям и или циклические соединения . Отщепление галогеноводородов из алкилгалогенидов либо воды из спиртов происходит по правилу Зайцева.

ОПРЕДЕЛЕНИЕ

Правило Зайцева : атом водорода Н отщепляется от наименее гидрогенизированного атома углерода.

Например, отщепление молекулы бромоводорода происходит от соседних атомов в присутствии щелочи, при этом образуется бромид натрия и вода.

ОПРЕДЕЛЕНИЕ

Перегруппировка - химическая реакция, в результате которой происходит изменение взаимного расположения атомов в молекуле, перемещение кратных связей или изменение их кратности.

Перегруппировка может осуществляться с сохранением атомного состава молекулы (изомеризация) или с его изменением.

ОПРЕДЕЛЕНИЕ

Изомеризация - частный случай реакции перегруппировки, приводящая к превращению химического соединения в изомер путем структурного изменения углеродного скелета.

Перегруппировка тоже может осуществляться по гомолитическому или гетеролитическому механизму. Молекулярные перегруппировки могут классифицироваться по разным признакам, например по насыщенности систем, по природе мигрирующей группы, по стереоспецифичности и др. Многие реакции перегруппировки имеют специфические названия - перегруппировка Кляйзена, перегруппировка Бекмана и др.

Реакции изомеризации широко используются в промышленных процессах, например при переработке нефти для повышения октанового числа бензина. Примером изомеризации является превращение н -октана в изооктан:


КЛАССИФИКАЦИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ ПО ТИПУ РЕАГЕНТА

РАЗРЫВ СВЯЗИ

Разрыв связи в органических соединениях может гомолитическим и гетеролитическим.

ОПРЕДЕЛЕНИЕ

Гомолитический разрыв связи - это такой разрыв, в результате которого каждый атом получает неспаренный электрон и образуются две частицы, имеющие сходное электронное строение - свободные радикалы .

Гомолитический разрыв характерен для неполярных или слабополярных связей, например C–C, Cl–Cl, C–H, и требует большого количества энергии.

Образующиеся радикалы, имеющие неспаренный электрон, обладают высокой реакционной способностью, поэтому химические процессы, протекающие с участием таких частиц, часто носят «цепной» характер, их трудно контролировать, а в результате реакции получается набор продуктов замещения. Так, при хлорировании метана продуктами замещения являются хлорметан C H 3 C l CH3Cl , дихлорметан C H 2 C l 2 CH2Cl2 , хлороформ C H C l 3 CHCl3 и четыреххлористый углерод C C l 4 CCl4 . Реакции с участием свободных радикалов протекают по обменному механизму образования химических связей.

Образующиеся в ходе такого разрыва связи радикалы обуславливают радикальный механизм протекания реакции. Радикальные реакции обычно протекают при повышенных температурах или при излучении (например, свет).

В силу своей высокой реакционной способности свободные радикалы могут оказывать негативное воздействие на организм человека, разрушая клеточные мембраны, воздействуя на ДНК и вызывая преждевременное старение. Эти процессы связаны, в первую очередь, с пероксидным окислением липидов, то есть разрушением структуры полиненасыщенных кислот, образующих жир внутри клеточной мембраны.

ОПРЕДЕЛЕНИЕ

Гетеролитический разрыв связи - это такой разрыв, при котором электронная пара остается у более электроотрицательного атома и образуются две заряженные частицы - ионы: катион (положительный) и анион (отрицательный).

В химических реакциях эти частицы выполняют функции «нуклеофилов » («фил» - от гр. любить ) и «электрофилов », образуя химическую связь с партнером по реакции по донорно-акцепторному механизму. Частицы-нуклеофилы предоставляют электронную пару для образования новой связи. Другими словами,

ОПРЕДЕЛЕНИЕ

Нуклеофил - электроноизбыточный химический реагент, способный взаимодействовать с электронодефицитными соединениями.

Примерами нуклеофилов являются любые анионы (C l , I , N O 3 Cl−,I−,NO3− и др.), а также соединения, имеющие неподеленную электронную пару (N H 3 , H 2 O NH3,H2O ).

Таким образом, при разрыве связи могут образоваться радикалы или нуклеофилы и электрофилы. Исходя из этого выделяют три механизма протекания органических реакций.

МЕХАНИЗМЫ ПРОТЕКАНИЯ ОРГАНИЧЕСКИХ РЕАКЦИЙ

Свободно-радикальный механизм : реакцию начинают свободные радикалы, образующиеся при гомолитическом разрыве связи в молекуле.

Наиболее типичный вариант - образование радикалов хлора или брома при УФ-облучении.

1. Свободно-радикальное замещение


метан бромметан

Инициирование цепи


Рост цепи


Обрыв цепи


2. Свободно-радикальное присоединение

этен полиэтилен

Электрофильный механизм : реакцию начинают частицы-электрофилы, получающие положительный заряд в результате гетеролитического разрыва связи. Все электрофилы - кислоты Льюиса.

Такие частицы активно образуются под действием кислот Льюиса , которые усиливают положительный заряд частицы. Чаще других используются A l C l 3 , F e C l 3 , F e B r 3 , Z n C l 2 AlCl3,FeCl3,FeBr3,ZnCl2 , выполняющие функции катализатора.

Местом атаки частицы-электрофила являются те участки молекулы, которые имеют повышенную электронную плотность, т. е. кратная связь и бензольное кольцо.

Общий вид реакций электрофильного замещения можно выразить уравнением:

1. Электрофильное замещение


бензол бромбензол

2. Электрофильное присоединение

пропен 2-бромпропан

пропин 1,2-дихлорпропен

Присоединение к несимметричным непредельным углеводородам происходит в соответствии с правилом Марковникова.

ОПРЕДЕЛЕНИЕ

Правило Марковникова: присоединение к несимметричным алкенам молекул сложных веществ с условной формулой НХ (где Х - это атом галогена или гидроксильная группа ОН–) атом водорода присоединяется к наиболее гидрогенизированному (содержащему больше всего атомов водорода) атому углерода при двойной связи, а Х - к наименее гидрогенизированному.

Например, присоединение хлороводорода HCl к молекуле пропена C H 3 – C H = C H 2 CH3–CH=CH2 .


Реакция протекает по механизму электрофильного присоединения. За счет электронодонорного влияния C H 3 CH3 -группы электронная плотность в молекуле субстрата смещена к центральному атому углерода (индуктивный эффект), а затем по системе двойных связей - к концевому атому углерода C H 2 CH2 -группы (мезомерный эффект). Таким образом, избыточный отрицательный заряд локализован именно на этом атоме. Поэтому атаку начинает протон водорода H + H+ , являющийся электрофильной частицей. Образуется положительно заряженный карбеновый ион [ C H 3 – C H − C H 3 ] + + , к которому присоединяется анион хлора C l Cl− .

ОПРЕДЕЛЕНИЕ

Исключения из правила Марковникова: реакция присоединения протекает против правила Марковникова, если в реакцию вступают соединения, у которых атом углерода, соседний с атомом углерода двойной связи, оттягивает на себя частично электронную плотность, то есть при наличии заместителей, проявляющих значительный электроноакцепторный эффект (– C C l 3 , – C N , – C O O H (–CCl3,–CN,–COOH и др.).


Нуклеофильный механизм : реакцию начинают частицы-нуклеофилы, имеющие отрицательный заряд, образовавшиеся в результате гетеролитического разрыва связи. Все нуклеофилы - основания Льюиса .

В нуклеофильных реакциях реагент (нуклеофил) имеет на одном из атомов свободную пару электронов и является нейтральной молекулой или анионом (H a l , O H , R O , R S , R C O O , R , C N – , H 2 O , R O H , N H 3 , R N H 2 Hal–,OH–,RO−,RS–,RCOO–,R–,CN–,H2O,ROH,NH3,RNH2 и др.).

Нуклеофил атакует в субстрате атом с наименьшей электронной плотностью (т. е. с частичным или полным положительным зарядом). Первой стадией реакции нуклеофильного замещения является ионизация субстрата с образованием карбкатиона. При этом новая связь образуется за счет электронной пары нуклеофила, а старая претерпевает гетеролитический разрыв с последующим отщеплением катиона. Примером нуклеофильной реакции может служить нуклеофильное замещение (символ S N SN ) у насыщенного атома углерода, например щелочной гидролиз бромпроизводных.

1. Нуклеофильное замещение

2. Нуклеофильное присоединение


этаналь циангидрин

источник http://foxford.ru/wiki/himiya

Реакции органических веществ можно формально разделить на четыре основных типа: замещения, присоединения, отщепления (элиминирования) и перегруппировки (изомеризации) . Очевидно, что все многообразие реакций органических соединений невозможно свести к предложенной классификации (например, реакции горения). Однако такая классификация поможет установить аналогии с уже знакомыми вам реакциями, протекающими между неорганическими веществами.

Как правило, основное органическое соединение, участвующее в реакции, называют субстратом , а другой компонент реакции условно рассматривают как реагент .

Реакции замещения

Реакции замещения - это реакции, в результате которых осуществляется замена одного атома или группы атомов в исходной молекуле (субстрате) на другие атомы или группы атомов.

В реакции замещения вступают предельные и ароматические соединения, такие как алканы, циклоалканы или арены. Приведем примеры таких реакций.

Под действием света атомы водорода в молекуле метана способны замещаться на атомы галогена, например, на атомы хлора:

Другим примером замещения водорода на галоген является превращение бензола в бромбензол:

Уравнение этой реакции может быть записано иначе:

При этой форме записи реагенты, катализатор, условия проведения реакции записывают над стрелкой, а неорганические продукты реакции - под ней.

В результате реакций замещения у органических веществ образуются не простое и сложное вещества, как в неорганической химии, а два сложных вещества.

Реакции присоединения

Реакции присоединения - это реакции, в результате которых две или более молекул реагирующих веществ соединяются в одну.

В реакции присоединения вступают ненасыщенные соединения, такие как алкены или алкины. В зависимости от того, какая молекула выступает в качестве реагента, различают гидрирование (или восстановление), галогенирование, гидрогалогенирование, гидратацию и другие реакции присоединения. Каждая из них требует определенных условий.

1.Гидрирование - реакция присоединения молекулы водорода по кратной связи:

2. Гидрогалогенирование - реакция присоединения галогенводорода (гидрохлорирование):

3. Галогенирование - реакция присоединения галогена:

4.Полимеризация - особый тип реакций присоединения, в ходе которых молекулы вещества с небольшой молекулярной массой соединяются друг с другом с образованием молекул вещества с очень высокой молекулярной массой - макромолекул.

Реакции полимеризации - это процессы соединения множества молекул низкомолекулярного вещества (мономера) в крупные молекулы (макромолекулы) полимера.

Примером реакции полимеризации может служить получение полиэтилена из этилена (этена) под действием ультрафиолетового излучения и радикального инициатора полимеразации R.

Наиболее характерная для органических соединений ковалентная связь образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая электронная пара. При разрыве связи судьба этих общих электронов может быть разной.

Типы реакционноспособных частиц

Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону (). В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:


Такие частицы называются свободными радикалами.

Свободные радикалы - атомы или группы атомов, имеющие неспаренные электроны.

Свободнорадикальные реакции - это реакции, которые протекают под действием и при участии свободных радикалов.

В курсе неорганической химии это реакции взаимодействия водорода с кислородом, галогенами, реакции горения. Реакции этого типа отличаются высокой скоростью, выделением большого количества тепла.

Ковалентная связь может образоваться и по донорно-акцепторному механизму. Одна из орбиталей атома (или аниона), на которой находится неподеленная электронная пара, перекрывается с незаполненной орбиталью другого атома (или катиона), имеющего незаполненную орбиталь, при этом формируется ковалентная связь, например:

Разрыв ковалентной связи приводит к образованию положительно и отрицательно заряженных частиц (); так как в данном случае оба электрона из общей электронной пары остаются при одном из атомов, у другого атома получается незаполненная орбиталь:

Рассмотрим электролитическую диссоциацию кислот:


Можно легко догадаться, что частица, имеющая неподеленную электронную пару R: — , т. е. отрицательно заряженный ион, будет притягиваться к положительно заряженным атомам или к атомам, на которых существует по крайней мере частичный или эффективный положительный заряд.
Частицы с неподеленными электронными парами называют нуклеофильными агентами (nucleus - «ядро», положительно заряженная часть атома), т. е. «друзьями» ядра, положительного заряда.

Нуклеофилы (Nu ) - анионы или молекулы, имеющие неподеленную пару электронов, взаимодействующие с участками молекул, на которых сосредоточен эффективный положительный заряд.

Примеры нуклеофилов: Сl — (хлорид-ион), ОН — (гидроксид-анион), СН 3 O — (метоксид-анион), СН 3 СОО — (ацетат-анион).

Частицы, имеющие незаполненную орбиталь, напротив, будут стремиться заполнить ее и, следовательно, будут притягиваться к участкам молекул, на которых присутствует повышенная электронная плотность, отрицательный заряд, неподеленная электронная пара. Они являются электрофилами, «друзьями» электрона, отрицательного заряда или частиц с повышенной электронной плотностью.

Электрофилы - катионы или молекулы, имеющие незаполненную электронную орбиталь, стремящиеся к заполнению ее электронами, так как это приводит к более выгодной электронной конфигурации атома.

Электрофилом с незаполненной орбиталью является не любая частица. Так, например, катионы щелочных металлов имеют конфигурацию инертных газов и не стремятся к приобретению электронов, так как имеют низкое сродство к электрону.
Из этого можно сделать вывод, что несмотря на наличие у них незаполненной орбитали, подобные частицы не будут являться электрофилами.

Основные механизмы протекания реакций

Выделено три основных типа реагирующих частиц - свободные радикалы, электрофилы, нуклеофилы - и три соответствующих им типа механизма реакций:

  • свободнорадикальные;
  • электрофильные;
  • нулеофильные.

Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять) и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспособных частиц, можно выделить несколько основных механизмов протекания реакций.

Кроме того, рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц - оснований.
6. Элиминирование:

Отличительной чертой алкенов (непредельных углеводородов) является способность вступать в реакции присоединения. Большинство этих реакций протекает по механизму электрофильного присоединения.

Гидрогалогенирование (присоединение галоген водорода):

При присоединении галогенводорода к алкену водород присоединяется к более гидрированному атому углерода, т. е. атому, при котором находится больше атомов водорода, а галоген - к менее гидрированному .

Образуется при перекрывании атомных орбиталей и образовании общих электронных пар. В результате этого образуется общая для двух атомов орбиталь, на которой находится общая пара электронов. При разрыве связи судьба этих общих электронов может быть разной.

Обменный механизм образования ковалентной связи. Гомолитический разрыв связи

Орбиталь с неспаренным электроном, принадлежащая одному атому, может перекрываться с орбиталью другого атома, на которой также находится неспаренный электрон. При этом происходит образование ковалентной связи по обменному механизму:

Н· + ·Н -> Н: Н, или Н-Н

Обменный механизм образования ковалентной связи реализуется в том случае, если общая электронная пара образуется из неспаренных электронов, принадлежащих разным атомам.

Процессом, противоположным образованию ковалентной связи по обменному механизму, является разрыв связи, при котором к каждому атому отходит по одному электрону. В результате этого образуются две незаряженные частицы, имеющие неспаренные электроны:

Такие частицы называются свободными радикалами .

Свободные радикалы - атомы или группы атомов, имеющие неспаренные электроны.

Механизм разрыва ковалентной связи, при котором образуются свободные радикалы, называется гемолитическим или гомолизом (гомо - одинаковый, т. е. такой тип разрыва связи приводит к образованию одинаковых частиц).

Реакции, которые протекают под действием и при участии свободных радикалов, называются свободнорадикальными реакциями.

Гидроксил-анион притягивается к атому углерода (атакует атом углерода), на котором сосредоточен частичный положительный заряд, и замещает бром, точнее, бромид-анион.

В молекуле 1-хлорпропана электронная пара в связи С-Сl смещена в сторону атома хлора вследствие его большей электроотрицательности. При этом атом углерода, получивший частичный положительный заряд (§+), оттягивает электроны от связанного с ним атома углерода , тот, в свою очередь, от следующего:

Таким образом, индуктивный эффект передается по цепи, но быстро затухает: он практически не наблюдается уже через три ст-связи.

Рассмотрим другую реакцию - присоединение бромоводорода к этену:

СН2=СН2 + НВr -> СН3-СН2Вr

На начальной стадии этой реакции происходит присоединение катиона водорода к молекуле, содержащей кратную связь:

СН2=СН2 + Н+ -> СН2-СН3

Электроны л-связи сместились к одному атому углерода, на соседнем оказался положительный заряд, незаполненная орбиталь.

Устойчивость подобных частиц определяется тем, насколько хорошо скомпенсирован положительный заряд на атоме углерода. Эта компенсация происходит за счет смещения электронной плотности а-связи в сторону положительно заряженного атома углерода, т. е. положительного индуктивного эффекта (+1).

Группа атомов, в данном случае метильная группа, от которой электронная плотность оттягивается, обладает донорным эффектом, который обозначается +1.

Мезомерный эффект. Существует другой способ влияния одних атомов или групп на другие - мезомерный эффект, или эффект сопряжения.

Рассмотрим молекулу бутадиена-1,3:

СН2=СН СН=СН2

Оказывается, что двойные связи в этой молекуле - это не просто две двойные связи! Так как они находятся рядом, происходит перекрывание п -связей, входящих в состав соседних двойных, и образуется общее для всех четырех атомов углерода п -электронное облако. При этом система (молекула) становится более устойчивой. Это явление называется сопряжением (в данном случае п - п -сопряжением).

Дополнительное перекрывание, сопряжение л-связей, разделенных одной о-связью, приводит к их «усреднению». Центральная простая связь приобретает частичный «двойной» характер, становится прочнее и короче, а двойные - несколько ослабевают и удлиняются.

Другим примером сопряжения может служить влияние двойной связи на атом, имеющий неподеленную электронную пару.

Так, например, при диссоциации карбоновой кислоты неподеленная электронная пара остается на атоме кислорода :

Это приводит к повышению устойчивости образовавшегося при диссоциации аниона, увеличению силы кислоты.

Смещение электронной плотности в сопряженных системах с участием п-связей или неподеленных электронных пар называется мезомерным эффектом (М).

Основные механизмы протекания реакций

Мы выделили три основных типа реагирующих частиц - свободные радикалы, электрофилы, нуклеофилы и три соответствующих им типа механизмов реакций:

Свободнорадикальные;
электрофильные;
нуклеофилъные.

Кроме классификации реакций по типу реагирующих частиц, в органической химии различают четыре вида реакций по принципу изменения состава молекул: присоединения, замещения, отщепления, или элиминирования (от англ. to eliminate - удалять, отщеплять), и перегруппировки. Так как присоединение и замещение могут происходить под действием всех трех типов реакционноспо-собных частиц, можно выделить несколько основных механизмов протекания реакций.

Кроме этого, мы рассмотрим реакции отщепления, или элиминирования, которые идут под воздействием нуклеофильных частиц - оснований.

1. Что такое гомолитический и гетеролитический разрывы ковалентной связи? Для каких механизмов образования ковалентной связи они характерны?

2. Что называют электрофилами и нуклеофилами? Приведите их примеры.

3. В чем различия между мезомерным и индуктивным эффектами? Как эти явления иллюстрируют положение теории строения органических соединений А. М. Бутлерова о взаимном влиянии атомов в молекулах органических веществ?

4. В свете представлений об индуктивном и мезомерном эффектах рассмотрите взаимное влияние атомов в молекулах:

Подтвердите свои выводы примерами уравнений химических реакций.

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

CH 3 -CH 3 + Cl 2 – (hv) ---- CH 3 -CH 2 Cl + HCl

C 6 H 5 CH 3 + Cl 2 --- 500 C --- C 6 H 5 CH 2 Cl + HCl

    Реакции присоединеия

Такие реакции характерны для органических соединений, содержащих кратные(двойные или тройные) связи. К реакциям этого типа относятся реакции присоединения галогенов, галогеноводородов и воды к алкенам и алкинам

CH 3 -CH=CH 2 + HCl ---- CH 3 -CH(Cl)-CH 3

    Реакции отщепления (элиминирования)

Это реакции, приводящие к образованию кратных связей. При отщеплении галогеноводородов и воды наблюдается определенная селективность реакции, описываемая правилом Зайцева, согласно которому атом водорода отщепляется от того атома углерода, при котором находится меньше атомов водорода. Пример реакции

CH3-CH(Cl)-CH 2 -CH 3 + KOH →CH 3 -CH=CH-CH 3 + HCl

    Полимеризации и поликонденсации

n(CH 2 =CHCl)  (-CH 2 -CHCl)n

    Окислительно-восстановительные

Наиболее интенсивная из окислительных реакций – это горение, реакция, характерная для всех классов органических соединений. При этом в зависимости от условий горения углерод окисляется до С (сажа), СО или СО 2 , а водород превращается в воду. Однако для химиков-органиков большой интерес представляют реакции окисления, проводимые в гораздо более мягких условиях, чем горение. Используемые окислители: растворы Br2 в воде или Cl2 в CCl 4 ; KMnO 4 в воде или разбавленной кислоте; оксид меди; свежеосажденные гидроксиды серебра (I) или меди(II).

3C 2 H 2 + 8KMnO 4 +4H 2 O→3HOOC-COOH + 8MnO 2 + 8KOH

    Этерификации (и обратной ей реакции гидролиза)

R 1 COOH + HOR 2 H+  R 1 COOR 2 + H 2 O

    Циклоприсоединение

Y R Y-R

+ ‖ → ǀ ǀ

R Y R-Y

+ →

11. Классификация органических реакций по механизму. Примеры.

Механизм реакции предполагает детальное постадийное описание химических реакций. При этом устанавливают, какие именно ковалентные связи разрываются, в каком порядке и каким путем. Столь же тщательно описывают образование новых связей в процессе реакции. Рассматривая механизм реакции, прежде всего обращают внимание на способ разрыва ковалентной связи в реагирующей молекуле. Таких способов два – гомолитический и гетеролитический.

Радикальные реакции протекают путем гомолитического (радикального) разрыва ковалентной связи:

Радикальному разрыву подвергаются неполярные или малополярные ковалентные связи (С–С, N–N, С–Н) при высокой температуре или под действием света. Углерод в радикале СН 3 имеет 7 внешних электронов (вместо устойчивой октетной оболочки в СН 4). Радикалы неустойчивы, они стремятся захватить недостающий электрон (до пары или до октета). Один из способов образования устойчивых продуктов – димеризация (соединение двух радикалов):

СН 3 + СН 3 СН 3 : СН 3 ,

Н + Н Н : Н.

Радикальные реакции – это, например, реакции хлорирования, бромирования и нитрования алканов:

Ионные реакции протекают с гетеролитическим разрывом связи. При этом промежуточно образуются короткоживущие органические ионы – карбкатионы и карбанионы – с зарядом на атоме углерода. В ионных реакциях связывающая электронная пара не разъединяется, а целиком переходит к одному из атомов, превращая его в анион:

К гетеролитическому разрыву склонны сильно полярные (Н–O, С–О) и легко поляризуемые (С–Вr, С–I) связи.

Различают нуклеофильные реакции (нуклеофил – ищущий ядро, место с недостатком электронов) и электрофильные реакции (электрофил – ищущий электроны). Утверждение, что та или иная реакция является нуклеофильной или электрофильной, условно всегда относится к реагенту. Реагент – участвующее в реакции вещество с более простой структурой. Субстрат – исходное вещество с более сложной структурой. Уходящая группа – это замещаемый ион, который был связан с углеродом. Продукт реакции – новое углеродсодержащее вещество (записывается в правой части уравнения реакции).

К нуклеофильным реагентам (нуклеофилам) относят отрицательно заряженные ионы, соединения с неподеленными парами электронов, соединения с двойными углерод-углеродными связями. К электрофильным реагентам (электрофилам) относят положительно заряженные ионы, соединения с незаполненными электронными оболочками (АlCl 3 , ВF 3 , FeCl 3), cоединения с карбонильными группами, галогены. Электрофилы – любые атом, молекула или ион, способные присоединить пару электронов в процессе образования новой связи. Движущая сила ионных реакций – взаимодействие противоположно заряженных ионов или фрагментов разных молекул с частичным зарядом (+ и –).

Примеры ионных реакций разных типов.

Нуклеофильное замещение :

Электрофильное замещение :

Нуклеофильное присоединение (сначала присоединяется CN – , потом Н +):

Электрофильное присоединение (сначала присоединяется Н + , потом Х –):

Элиминирование при действии нуклеофилов (оснований) :

Элиминирование при действии электрофилов (кислот) :

Наименование параметра Значение
Тема статьи: Механизмы органических реакций
Рубрика (тематическая категория) Образование

Классификация реакций

Существуют четыре основные типа реакций, в которых участвуют органические соединœения: замещение (вытеснение), присоединœение, элиминирование (отщепления), перегруппировки.

3.1 Реакции замещения

В реакциях первого типа замещение обычно происходит у атома углерода, но замещенный атом должна быть атомом водорода или каким-либо другим атомом или группой атомов. При электрофильном замещении чаще всœего замещается атом водорода; примером служит классическое ароматическое замещение:

При нуклеофильном замещении чаще замещается не атом водорода, а другие атомы, к примеру:

NC - + R−Br → NC−R +BR -

3.2 Реакции присоединœения

Реакции присоединœения также бывают электрофильными, нуклеофильными или радикальными исходя из типа частиц, инициирующих процесс. Присоединœение к обычным двойным углерод-углеродным связям индуцируется, как правило, электрофилом или радикалом. К примеру, присоединœение HBr

может начинаться с атаки двойной связи протоном Н + или радикалом Br·.

3.3 Реакции элиминирования

Реакции элиминирования по существу обратны реакциям присоединœения; наиболее обычный тип такой реакции – отщепление атома водорода и другого атома или группы от сосœедних атомов углерода с образованием алкенов:

3.4 Реакции перегруппировки

Перегруппировки также могут протекать через промежуточные соединœения, представляющие собой катионы, анионы или радикалы; чаще всœего эти реакции идут с образованием карбокатионов или других электронодефицитных частиц. Перегруппировки могут включать существенную перестройку углеродного скелœета. За стадией собственно перегруппировки в таких реакциях часто следуют стадии замещения, присоединœения или отщепления, приводящие к образованию стабильного конечного продукта.

Детальное описание химической реакции по стадиям принято называть механизмом. С электронной точки зрения под механизмом химической реакции понимают способ разрыва ковалентных связей в молекулах и последовательность состояний, через которые проходят реагирующие вещества до превращения в продукты реакций.

4.1 Свободно-радикальные реакции

Свободно-радикальные реакции - ϶ᴛᴏ химические процессы, в которых принимают участие молекулы, имеющие неспаренные электроны. Определœенные аспекты реакций свободных радикалов являются уникальными в сравнении с другими типами реакций. Основное различие состоит в том, что многие свободно-радикальные реакции являются цепными. Это означает существование механизма, благодаря которому множество молекул превращается в продукт с помощью повторяющегося процесса, инициируемого созданием одной реакционноспособной частицы. Типичный пример иллюстрируется с помощью следующего гипотетического механизма:

Стадию, на которой генерируется реакционный интермедиат, в данном случае А·, принято называть инициированием. Эта стадия протекает при высокой температуре, под действием УФ или пероксидов, в неполярных растворителях. В следующих четырех уравнениях данного примера повторяется последовательность двух реакций; они представляют фазу развития цепи. Цепные реакции характеризуются длиной цепи, которая соответствует числу стадий развития, приходящихся на одну стадию инициирования. Вторая стадия протекает одновременным синтезом соединœения и образования нового радикала, который продолжает цепь превращений. Последней стадией является стадией обрыва цепи, которая включает любую реакцию, в которой разрушается один из реакционных интермедиатов, необходимых для развития цепи. Чем больше стадий обрыва цепи, тем меньшей становится длина цепи.

Свободно-радикальные реакции протекают: 1)на свету, при высокой температуре или в присутствии радикалов, которые образуются при разложении других веществ; 2)тормозятся веществами, легко реагирующими со свободными радикалами; 3)протекают в неполярных растворителях или в паровой фазе; 4)часто имеют автокаталитический и индукционный период перед началом реакции; 5)в кинœетическом отношении являются цепными.

Реакции радикального замещения характерны для алканов, а радикального присоединœения – для алкенов и алкинов.

СН 4 + Сl 2 → CH 3 Cl + HCl

CH 3 -CH=CH 2 + HBr → CH 3 -CH 2 -CH 2 Br

CH 3 -C≡CH + HCl → CH 3 -CH=CHCl

Соединœение свободных радикалов между собой и обрыв цепи происходит в основном на стенках реактора.

4.2 Ионные реакции

Реакции, в которых происходит гетеролитический разрыв связей и образуются промежуточные частицы ионного типа, называются ионными реакциями.

Ионные реакции протекают: 1)в присутствии катализаторов (кислот или оснований и не подвержены влиянию света или свободных радикалов, в частности, возникающих при разложении пероксидов); 2)не подвергаются влиянию акцепторов свободных радикалов; 3)на ход реакции оказывает влияние природа растворителя; 4)редко протекают в паровой фазе; 5)кинœетически являются, в основном, реакциями первого или второго порядка.

По характеру реагента͵ действующего на молекулу, ионные реакции делятся на электрофильные и нуклеофильные . Реакции нуклеофильного замещения характерны для алкил- и арилгалогенидов,

CH 3 Cl + H 2 O → CH 3 OH + HCl

C 6 H 5 -Cl + H 2 O → C 6 H 5 -OH + HCl

C 2 H 5 OH + HCl → C 2 H 5 Cl + H 2 O

C 2 H 5 NH 2 + CH 3 Cl → CH 3 -NH-C 2 H 5 + HCl

электрофильного замещения – для алканов в присутствии катализаторов

CH 3 -CH 2 -CH 2 -CH 2 -CH 3 → CH 3 -CH(CH 3)-CH 2 -CH 3

и аренов.

C 6 H 6 + HNO 3 + H 2 SO 4 → C 6 H 5 -NO 2 + H 2 O

Реакции электрофильного присоединœения характерны для алкенов

CH 3 -CH=CH 2 + Br 2 → CH 3 -CHBr-CH 2 Br

и алкинов,

CH≡CH + Cl 2 → CHCl=CHCl

нуклеофильного присоединœения – для алкинов.

CH 3 -C≡CH + C 2 H 5 OH + NaOH → CH 3 -C(OC 2 H 5)=CH 2

Механизмы органических реакций - понятие и виды. Классификация и особенности категории "Механизмы органических реакций" 2017, 2018.