Ароматические соединения. Ароматическое электрофильное замещение Энергетический профиль реакции электрофильного ароматического замещения

Наиболее важными реакциями этого типа являются нитрование, галогенирование, сульфирование, алкилирование, ацилирование.

Механизм ароматического электрофильного замещения.

Большинство реакций ароматического электрофильного замещения протекает по единому механизму:

Реакция начинается с образования p -комплекса, в котором p -электронная система ароматического ядра выступает как донор электронов, а электрофильный реагент (Е +) действует как акцептор. Далее p -комплекс с нарушением ароматической системы медленно перегруппировывается в s -комплекс, в котором электрофил связан s -связью с определенным атомом углерода, а положительный заряд делокализован по сопряженной системе бывшего ароматического кольца. Делокализация положительного заряда в s -комплексе происходит в основном за счет о- и п-положений по отношению к вступающему заместителю, что может быть показано с помощью набора резонансных структур

На последней стадии происходит отщепление протона от s -комплекса под действием основания с восстановлением ароматической системы. Лимитирующей стадией в процессе электрофильного замещения является стадия образования s -комплекса.

Ход реакции и ее механизм иллюстрирует энергетическая диаграмма, представленная на рисунке:

Ориентация и реакционная способность

Если бензольное кольцо уже содержит заместитель, то:

    1. реакция может протекать быстрее или медленнее, чем с самим бензолом;
    2. возможно образование трех разных продуктов замещения

Влияние имеющегося в бензольном кольце заместителя можно объяснить исходя из его электронных эффектов. По этому признаку заместители можно разделить на 3 основных группы:

1. Заместители, ускоряющие реакцию по сравнению с незамещенным бензолом (активирующие ) и направляющие замещение в орто ,-пара- положения.

2. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в орто,-пара- положения .

3. Заместители, замедляющие реакцию (дезактивирующие ) и направляющие замещение в мета - положения.

Заместители, отмеченные в п.п. 1,2 (орто-,пара-ориентанты ) называются заместителями I-го рода ; отмеченные в п.3 (мета-ориентанты ) - заместителями II-го рода . Ниже приведено отнесение обычно встречающихся заместителей в соотвествие с их электронными эффектами.

Таблица 6. Влияние заместителей ароматическом кольце на реакции S E Ar

Ориентанты I-го рода (орто-, пара- ) Ориентанты II-го рода (мета- )
активирующие дезактивирующие дезактивирующие
Все алкильные группы, -OH, -OR, -O - , -OC(O)R, -NH 2 , -NHR, -NR 2 , NHC(O)R Галогены: F, Cl, Br, I

CHO, -C(O)R, -CN,

SO 3 H, -COOH,

COOR, -NO 2

СHal 3 , -N + R 3 ,

Очевидно, что электрофильное замещение будет происходить тем быстрее, чем более электронодонорным является заместитель в ядре, и тем медленнее, чем более электроноакцепторным является заместитель в ядре.

Для объяснения ориентации замещения рассмотрим строение s -комплексов при атаке в орто -, мета- и пара- положения монозамещенного бензола (как уже отмечалось, образование s -комплексов обычно является скорость-определяющей стадией электрофильного замещения; cледовательно, легкость их образования должна определять легкость протекания замещения в данное положение):

Если группа Z - донор электронов (неважно, индуктивный или мезомерный), то при орто - или пара -атаке она может принимать непосредственное участие в делокализации положительного заряда в s -комплексе (структуры III, IV, VI, VII). Если же Z - акцептор электронов, то указанные структуры будут энергетически невыгодными (из-за наличия частичного положительного заряда на атоме углерода, связанном с электроноакцепторным заместителем) и в этом случае оказывается предпочтительной мета-атака, при которой не возникает таких структур.

Приведенное выше объяснение дано на основании так называемого динамического эффекта , т.е. распределения электронной плотности в реагирующей молекуле. Ориентацию электрофильного замещения в монозамещенных бензолах можно объяснить и с позиции статическихэлектронных эффектов - распределения электронной плотности в нереагирующей молекуле. При рассмотрении смещения электронной плотности по кратным связям можно заметить, что при наличии электронодонорного заместителя более всего повышена электронная плотность в орто- и пара- положениях, а при наличии электроноакцепторного заместителя эти положения наиболее обеднены электронами:

Особый случай представляют собой галогены - будучи заместителями в бензольном ядре, они дезактивируют его в реакциях электрофильного замещения, однако являются орто -, пара- ориентантами. Дезактивация (снижение скорости реакции с электрофилами) связана с тем, что, в отличие других группировок с неподеленными электронными парами (таких как -OH, -NH 2 и т.п.), обладающих положительным мезомерным (+М) и отрицательным индуктивным эффектом (-I), для галогенов характерно преобладание индуктивного эффекта над мезомерным (+М< -I).

В то же время, атомы галогенов являются орто,пара -ориентантами, поскольку способны за счет положительного мезомерного эффекта участвовать в делокализации положительного заряда в s -комплексе, образующемся приорто - или пара - атаке (структуры IV, VII в приведенной выше схеме), и тем самым снижают энергию его образования.

Если в бензольном ядре имеется не один, а два заместителя, то их ориентирующее действие может совпадать (согласованная ориентация ) или не совпадать (несогласованная ориентация ). В первом случае можно рассчитывать на преимущественное образование каких-то определенных изомеров, а во втором будут получаться сложные смеси.

Ниже приведены некоторые примеры согласованной ориентации двух заместителей; место преимущественного вступления третьего заместителя показано стрелкой.

Примеры реакций электрофильного замещения.

Нитрование

Нитрование, как правило, проводят смесью концентрированных азотной и серной кислот, так называемойнитрующей смесью . На первой стадии реакции происходит образование электрофильного агента - иона нитрония + NO 2:

Затем катион нитрония вступает в реакцию с ароматическим субстратом, например бензолом:

Галогенирование

В отличие от нитрования, при галогенировании атака ароматического субстрата может осуществляться различными электрофилами. Свободные галогены, например, Cl 2 и Br 2 , могут легко атаковать активированное ароматическое ядро (например, фенола), но не способны реагировать с бензолом и алкилбензолами. Для поляризации атакующей молекулы галогена необходим катализ кислотами Льюиса , такими как AlCl 3 , FeBr 3 , и т.п.; при этом в молекуле галогена появляется так называемый "электрофильный конец" (энергия же, требующаяся для образования катиона Наl + существенно выше). Тем самым электрофильное замещение существенно облегчается:

Сульфирование

Арены взаимодействуют с концентрированной серной кислотой или олеумом (раствор SO 3 в серной кислоте) с образованием аренсульфокислот:

ArH + H 2 SO 4 ® ArSO 3 H + H 2 O

Электрофильной частицей является SO 3 . Атаку ароматического субстрата осуществляет атом серы, поскольку он сильно положительно поляризован, то есть электронодефицитен:

Сульфирование является обратимым процессом. Сульфогруппа может удаляться из ароматического ядра, что широко используется в органическом синтезе.

Алкилирование по Фриделю-Крафтсу

Подобно галогенам, алкилгалогениды могут быть так сильно поляризованы кислотами Льюиса (хлоридами алюминия и цинка, трифторидом бора и др.), что они становятся способными к электрофильному замещению в ароматическом ядре:

Кроме алкилгалогенидов для алкилирования ароматических соединений могут использоваться алкены или спирты в присутствие катализатора - протонной кислоты:

Присутствие катализатора - протонной кислоты необходимо для генерирования электрофильной частицы - карбокатиона:

Алкилирование аренов алкенами происходит в соответствии с правилом Марковникова.

Продукты алкилирования легче вступают в реакции электрофильного ароматического замещения, чем исходное соединение (Alk - электронодонорная группа), поэтому дальше преимущественно алкилируется продукт и образуются продукты полиалкилирования. Если хотят получить продукты моноалкилирования, то необходимо брать большой избыток ароматического соединения.

Ацилирование по Фриделю-Крафтсу

Арены взаимодействуют с хлорангидридами и ангидридами карбоновых кислот с образование кетонов:

Хлорангидриды и ангидриды, имеют полярную карбонильную группу и в способны к электрофильному замещению в ароматических системах:

Электрофильная активность этих соединений, однако, невелика, и должна быть повышена действием кислот Льюиса. В результате образуется поляризованный комплекс (а в пределе - ацилкатион), действующий как электрофил:

Полиацилирования не наблюдается, поскольку образующийся кетон значительно менее реакционноспособен, чем исходное соединение. Ароматические соединения с сильнодезактивирующими заместителями, например, нитро- или циано- группами, также не ацилируются по Фриделю-Крафтсу.

Электрофильное замещение в конденсированных ароматических углеводородах.

Конденсированные ароматические углеводородв обладают большей реакционной способностью, чем бензол, так как энергия сопряжения, приходящаяся на одно ароматическое кольцо в них меньше, чем в бензоле.

Для замещении в нафталине возможно образование двух изомерных продуктов при атаке электрофила в a - или в b -положение. Атомы водорода в a -положении обладают более высокой реакционной способностью и, если реакция протекает в условиях кинетического контроля (хлорирование, нитрование), то образуется a -изомер:

Сульфирование нафталина концентрированной серной кислотой при 80 о С приводит к a-изомеру, который образуется с большей скоростью(кинетический контроль), а при 160 о С - к термодинамически более стабильному b -изомеру (термодинамический контроль).

Еще более высокой реакционной способностью по сравнению с бензолом обладает антрацен. При этом во всех случаях атака электрофильных реагентов происходит по центральному ядру, а периферийные бензольные ядра сохраняются.

Замечание 1

Самой важной группой реакций для ароматических соединений являются реакции электрофильного замещения. Поскольку ароматическое кольцо притягивает электрофильные, а не нуклеофильные частицы, то реакции по этому проходят легко и широко используются как в лабораторном, так и в промышленном синтезе.

Данный процесс заключается в замещении одной электрофильной частицы (обычно - протона) другой электронно-дефицитной частью. В этой реакции используют разнообразные электрофильные реагенты обозначаемые символом $E^+$, и она является путем получения многих замещенных ароматических соединений. Более того, когда эту реакцию применяют к производным бензола, уже содержащим один или более заместитель, для процесса характерно явление региоселективности (специфичности и направленности замещения), а также выборочная реакционная способность, которые объясняются теорией.

Типы механизмов электрофильного ароматического замещения

Для электрофильного ароматического замещения предполагается два механизма идущих по альтернативным направлениям:

Механизм одностадийного бимолекулярного замещения типа $S_E2$

По данному механизму в конфигурация в ароматическом секстете $\pi$-электронов в ходе реакций сохраняется, и процесс замещения происходит путем взаимодействий НСМО электрофилов с ВЗМО связями ароматических соединей $C - H$:

Рисунок 2.

В переходных состояниях образуются трехцентровые двухэлектронные связи между $C-H$ и теми атомами электрофилов $E^+$, на которых плотность НСМО велика. Образование трехцентровых переходных состояний $(I)$ не вызывает теоретических возражений. Двухэлектронные трехцентровые фрагменты в этих переходных состояниях изоэлектроннв ароматическим $\pi$-системам циклопропенильных катионов, которые ароматичны. Значит, переходные состояния $(I)$ будут «ароматичными», т. е. не слишком высокими по энергии.

Механизм SE-аренониевого электрофильного замещения

Второму механизму было дано название $S_E(Ar)$ - $S_E$-аренониевое электрофильное замещение. По этому механизму ароматичность и шестиэлектронная система в интермедиатах исчезает, они заменяются на нециклические четырехэлектронные сопряженные системы пентадиенильных катионов $(C=C-C=C-C^+)$, а на второй стадии ароматические системы вновь восстанавливаются в результате отщеплений протонов. Атака НСМО электрофилов происходит не на $\sigma$-орбиталям связей, а на $\pi$- ВЗМО, поэтому взаимодействия граничных МО можно представить в виде двух альтернативных схемам:

Рисунок 3.

Однако в монозамещенном бензоле $C_6H_5X$ вырождение снимается. Так например, в феноле или анилине ВЗМО имеют форму (а). Строение аренониевых ионов $(II)$ можно изобразить различными способами:

Рисунок 4.

Наиболее часто употребляют первую формулу, однако и другие приведенные схематические формулы также актуальны. Используя эти альтернативные формулы можно показать, что положительные заряды аренониевых ионов в основном находятся в орто - и пара - положении к геминальным узлам циклогексадиенильных катионов. И поэтому $\sigma$-комплексы будут стабилизироваться донорными заместителями , которые находятся в орто - и пара - положениих, гораздо лучше, чем донорными заместителями в мета- положении. Если переходные состояния медленных стадий электрофильного замещения похожи на аренониевые ионы, то (+М)-заместитель будет направлять электрофил в пара - и орто - положение, т. е. реакция будет региоселективной.

В 1950 -70-х годах в двух исследовательских группах - К. Ингольда (Университетский колледж Лондонского университета) и О.А. Реутова (Химический факультет Московского государственного университета им. М. В. Ломоносова) проводились интенсивные исследования механизма электрофильного замещения у насыщенного атома углерода. В качестве основных объектов были выбраны ртутьорганические соединения, в которых связь углерод-ртуть достаточно легко расщепляется при действии электрофилов (кислоты, галогены, соли металлов и др.).

В этот период также проводились и другие чрезвычайно важные работы в этом направлении, в частности изучение механизмов реакций присоединения и элиминирования, ароматического нуклеофильного замещения, имеющих значение для моделирования биологических систем, механизмов катализа нуклеофильных реакций карбонильных соединений, механизмов неорганических реакций, реакций органических соединений переходных металлов и т.д.

$Se$-Реакции металлорганических соединений

В $Se$-реакции вступают $\sigma$-связанные органические соединения различных металлов - от щелочных и щелочноземельных до тяжелых непереходных, а также переходных металлов, лантаноидов и актинидов. При этом механизм и скорость реакции сильно зависят от природы металла. Например, с таким электрофилом, как вода, цинкдиалкилы $R_2Zn$ реагируют со взрывом, $R_2Cd$ - медленно, а $R_2Hg$ практически не взаимодействуют, хотя ртутьдиалкилы расщепляются под действием растворов $HCl$.

С точки зрения синтетической значимости наиболее важными являются литий- и магнийорганические соединения, поэтому необходимо знать механизмы реакций именно этих соединений. Однако соответствующие исследования сильно осложняются из-за чрезвычайно высокой реакционной способности соединений лития и магния (обычно их используют in situ, а хранить и работать с ними можно только в анаэробных условиях). Кроме того, литийорганические соединения в растворах сильно ассоциированы, а магнийорганические соединения находятся в равновесии Шленка. Поэтому литий- и магнийорганические соединения были признаны не очень удобными субстратами для изучения количественных закономерностей электрофильного замещения. И хотя механизмы реакций с участием $RLi$ или $RMgX$, естественно, изучаются, наиболее важную роль в выяснении механизма $Se$-реакций сыграли ртуть- и в меньшей степени оловоорганические соединения, которые достаточно устойчивы на воздухе и реагируют с электрофилами со скоростями, которые могут быть измерены обычными методами.

Особенности механизмов реакций электрофильного замещения

Теоретическое рассмотрение стереохимии реакций электрофильного замещения по механизму $Se2$ приводит к выводу, что в отличие от $Sn2$- реакций, которые по орбитальной симметрии разрешены при атаке нуклеофила с тыла и запрещены при фронтальной атаке, реакции $Se2$ не запрещены ни при фронтальной, ни при тыловой атаке электрофила. Тем не менее, теоретически несколько более предпочтительна фронтальная атака, поскольку электрофил атакует высшую занятую МО (ВЗМО) связи $C-Z$, а электронная плотность этой орбитали концентрируется в основном в межъядерной области:

Рисунок 1.

Фронтальная атака соответствует трехцентровому (5), а тыловая - линейному (6) переходным состояниям; в первом случае стереохимическим результатом будет сохранение конфигурации углеродного центра, а во втором - инверсия конфигурации:

Рисунок 2.

Подавляющее большинство реакций электрофильного замещения второго порядка протекает с сохранением конфигурации. Так, очень легко происходит электрофильное замещение второго порядка у атомов углерода в голове моста мостиковых соединений. Легко протекают также $Se$-реакции неопен- тильных субстратов $(CH_3)_3CCH_2Z$, которые в случае нуклеофильного замещения реагируют исключительно медленно из-за пространственных препятствий тыловой атаке.

Однако известны примеры обращения конфигурации, что свидетельствует о тыловой атаке электрофила.

Виды механизмов электрофильного замещения

На основании результатов исследования $Se$-реакций $\sigma$-металлоорганических соединений была сформулирована концепция нуклеофильного содействия электрофильному замещению. Суть ее заключается в том, что на скорость и механизм $Se$-реакций в растворах оказывает значительное влияние присутствие тех или иных продуцентов нуклеофильных частиц. Такими нуклеофильными частицами могут бытькак «внутренние» нуклеофилы $Nu^-$, входящие в состав электрофильных агентов $E-Nu$ (например, $C1^-$ в $HgCl_2$ ($E = HgCl^+$), $Br^-$ в $Br_2$ ($E = Br^+$), два аниона $I^-$ в $I^{3-}$ ($E = I^+$) и др.), так и обычные нуклеофильные частицы.

Таким образом, добавка нуклеофилов, которые способны координироваться с атомами металлов, также должна увеличивать скорость $SE1$-реакций. Мономолекулярные реакции с содействием обозначаются символом $Se(N)$, а бимолекулярные реакции с внутренним содействием - символом $Sei$. Для механизма $Sei$ характерно четырехцентровое переходное состояние 7, в котором образование связей $C-E$ и $M-Nu$ и разрыв связей $E-Nu$ и $C-M$ происходят в большей или меньшей степени синхронно. Механизмы $Se(N)$ и $SEi$ представлены на схеме ниже:

Нуклеофилы могут катализировать также и реакции $Se2$, координируясь исключительно с металлами, например:

Рисунок 5.

Под действием концентрированной азотной кислоты или смеси концентрированных азотной и серной кислот (нитрующая смесь) атомы водорода бензольного ядра замещаются на нитрогруппу:

нитробензол

Нитрованию предшествует образование электрофильного реагента NO 2 - катиона нитрония.

В реакции нитрования бензола нитрующей смесью катион нитрония (NO 2 ) образуется в результате протонирования азотной кислоты присутствующей концентрированной серной кислотой:

Дальнейшее нитрование происходит с трудом, так как нитрогруппа является заместителем второго рода и затрудняет течение реакций с электрофильными реагентами:

нитробензол 1,3-динитробензол 1,3,5-тринитробензол

Гомологи бензола (толуол, ксилолы) нитруются легче, чем бензол, так как алкильные группы являются заместителями первого рода и облегчают течение реакций с электрофильными реагентами:

1,3,5-тринитробензол

толуол орто-нитротолуол пара-нитротолуол

1,3,5-тринитробензол

1.2. Реакции сульфирования.

При действии на бензол и его гомологи концентрированной серной кислотой или триоксидом серы атомы водорода в бензольном ядре замещаются на сульфогруппу:

бензолсульфокислота

Механизм реакции

Сульфированию предшествует образование электрофильного реагента HSO + 3 - гидросульфониевого иона:

3H 2 SO 4 → Н 3 О + + HSO + 3 + 2HSO - 4

π-комплекс σ-комплекс

H + + HSO - 4 → H 2 SO 4

Еще более активным электрофильным реагентом является триоксид серы, в котором имеется дефицит электронной плотности на атоме серы:

σ- комплекс

биполярный ион

Гомологи бензола сульфируются легче, чем бензол, так как алкильные группы являются заместителями первого рода и облегчают течение реакций с электрофильными реагентами:

1.3. Реакции галогенирования.

В присутствии катализаторов кислот Льюиса (AlCl 3 ; AlBr 3 ; FeCl 3 ; FeBr 3 ; ZnCl 2 ) при комнатной температуре происходит замещение атомов водорода бензольного ядра на атомы галогена:

Причем хлор замещает водород в ароматическом ядре активнее брома, а осуществить иодирование и фторирование аренов практически не удается, вследствие недостаточной активности иода и чрезмерной активности фтора.

Роль катализатора заключается в образовании или положительного иона галогена или комплекса галогена с кислотой Льюиса с поляризацией связи галоген-галоген:

1) образование положительного иона галогена:

2) образование комплекса галогена с кислотой Льюиса с поляризацией связи галоген-галоген:

Дальнейшее галогенирование происходит с трудом, так как галогены затрудняют реакции с электрофильными реагентами, но являются орто- и пара-ориентантами:

бромбензол 1,2-дибромбензол 1,4-дибромбензол

Гомологи бензола галогенируются легче, чем бензол, так как алкильные группы являются заместителями первого рода и облегчают течение реакций с электрофильными реагентами:

толуол орто-хлортолуол пара-хлортолуол

По химическим свойствам арены отличаются от предельных и непредельных углеводородов. Это объясняется особенностями строения бензольного кольца. Делокализация шести p-электронов в циклической системе понижает энергию молекулы, что обусловливает повышенную устойчивость (ароматичность) бензола и его гомологов. Поэтому арены не склонны вступать в реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции, идущие с сохранением ароматической системы, а именно, реакции замещения атомов водорода, связанных с циклом. Наличие областей повышенной p-электронной плотности с двух сторон плоского ароматического цикла ведет к тому, что бензольное кольцо является нуклеофилом и в связи с этим склонно подвергаться атаке электрофильным реагентом. Таким образом, для ароматических соединений наиболее типичны реакции электрофильного замещения.

Рассмотрим механизм электрофильного замещения на примере нитрования бензола.

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

нитробензол

Реакции замещения в кольцо протекают только через образование положительно заряженных промежуточных частиц.

p-комплекс s-комплекс

Замещаемой частицей является протон.

По такому механизму протекают реакции алкилирования, галогенирования, сульфирования, нитрования ароматических соединений и другие, различаясь лишь способом образования активной частицы реакции – электрофила Е +

а) сульфирование:

HO–SO 3 H + H–SO 4 H à HSO 3 + + HSO 4 –

б) галогенирование

Cl 2 + AlCl 3 à Cl + + AlCl 4 –

в) алкилирование:

CH 3 –CH 2 –Cl + AlCl 3 à CH 3 –CH 2 + + AlCl 4 –

г) ацилирование

СН 3 СOCl + AlCl 3 à СН 3 С + =O + AlCl 4 –

В незамещенном кольце бензола все 6 положений равноценны для вхождения замещающей группы. Сложнее обстоит дело, если в реацию вступают гомологи или производные бензола. В этом случае вновь входящая группа вступает в определенное место в кольце. Это место зависит от уже имеющегося (или имеющихся) в кольце заместителя. Например, если в кольце имеется электронодонорная группировка типа: алкил–, –ОН, –ОСН 3 , –NH 2 , –NHR, NR 2 , –NH–COR, –Х (галоген) (заместители первого рода ), то замещающая группа вступает в орто- или пара- положения относительно имеющейся группы:

Если в кольце уже имеется электроноакцепторная группировка типа: –NO 2 , –NO, –SO 3 H, –CX 3 , –COOH, –COH, –COR, –CN (заместители второго рода ), то вновь вступающая группа становится в мета- положение к ним:

Таблица 2

Сводная таблица заместителей и их электронных эффектов

Заместитель или группа атомов Ориентация Эффекты
СН 3 > CH 3 –CH 2 > (CH 3) 2 CH о-, п- ориентация, (галогены–дезактивирующие) + I, +M
(CH 3) 3 C + I, M=0
Атом, присоединенный к p–системе, имеет неподеленную пару электронов: X– (галоген), –O – , –OH, –OR, –NH 2 , –NHR, –NR 2 , –SH, –SR, – I, + M
присоединенный к p–системе атом в свою очередь связан с более электроотрицательным атомом: –N=O,–NO 2 , –SO 3 H, –COOH, –COH, –C(O)–R, –COOR, –CN, –CX 3 , –C=N=S, м-ориентация, с дезактивированием – I, –M
sp 2 -гибридизованный углерод: –СН=СН–, –С 6 Н 5 (фенил) о-, п- ориентация I=0,+M
Атом, не имеющий р–орбиталей, но с полным положительным зарядом –NH 3 + , –NR 3 + , м- ориентация, с дезактивированием –I, M=0

Если в кольце имеется два заместителя разного рода , направляющие замещение несогласованно , то место вступления новой группы определяется по заместителю первого рода , например.