Структурно-функциональная характеристика зрительного анализатора (проводниковый, рецепторный и корковый отдел). Фотохимические процессы в сетчатке при действии света

Фотохимические процессы в сетчатке глаза заключаются в том, что находящийся в наружных члениках палочек зрительный пурпур (родопсин) разрушается под действием света и восстанавливается в темноте. В последнее время изучением роли зрительного пурпура в процессе действия света на глаз очень широко занимаются Rush ton (1967) и Weale (1962).

Сконструированные ими приборы позволяют измерить толщину распавшегося под влиянием света слоя родопсина в сетчатке живого человеческого глаза. Результаты проведенных исследований позволили авторам сделать заключение о том, что между изменением световой чувствительности и количеством распавшегося зрительного пурпура прямая зависимость отсутствует.

Это может указывать на более сложные процессы, происходящие в сетчатке при действии на нее видимой радиации или, как нам кажется, на несовершенство методического приема (применение атропина, использование искусственного зрачка и т. д.).

Действие света не объясняется лишь исключительно фотохимической реакцией. Принято считать, что при попадании света на сетчатку в зрительном нерве возникают токи действия, фиксируемые высшими центрами коры головного мозга.

При регистрации во времени токов действия получается ретинограмма. Как показывает анализ электроретинограммы она характеризуется начальным скрытым периодом (время с момента воздействия светового потока до появления первых импульсов), максимумом (возрастание числа импульсов) и плавным снижением с предварительным небольшим увеличением (скрытый период конечного эффекта).

Так при одной и той же яркости раздражителя частота импульсов зависит от характера предварительной адаптации глаза, если глаз был адаптирован к свету, то она снижается, а если адаптирован к темноте — повышается.

Кроме реакции на свет, зрительный анализатор осуществляет определенную зрительную работу. Однако, по всей вероятности, механизмы, принимающие участие в процессе восприятия света, и детали объекта при выполнении зрительной работы будут не совсем идентичны.

Если на колебание уровня светового потока анализатор отвечает увеличением или уменьшением площади рецептивных полей сетчатки, то на усложнение объекта восприятия — изменением оптической системы глаза (конвергенция, аккомодация, папилломоторная реакция и т. д.).

Видимая радиация оказывает влияние на разнообразные функции зрительного анализатора: на световую чувствительность и адаптацию, контрастную чувствительность и остроту зрения, устойчивость ясного видения и быстроту различения и т. д.

«Клиника заболеваний, физиология и гигиена в подростковом возрасте», Г.Н.Сердюковская

Мышцы зрачка, получив сигнал Д, перестают реагировать на сигнал Г, о чем и сообщают сигналом Е. С этого момента зрачок принимает посильное участие в усилении четкости изображения предмета на сетчатке, основная же роль в этом процессе принадлежит хрусталику. В свою очередь «центр регуляции силы раздражителя сетчатки», получив сигнал Е, передает информацию К другим центрам, в…

Прогрессирование миопии Э. С. Аветисов рассматривает как следствие «перерегулирования», когда «целесообразный» процесс приспособления глаза с ослабленной аккомодационной способностью к работе на близком расстоянии превращается в свою противоположность. Из сказанного выше становится понятным, какое важное значение для работоспособности глаза имеет достаточное рациональное освещение. Особое значение оно приобретает для подростков, сочетающих работу с учебой. Однако в настоящее…

Сила света и освещенность поверхности связаны следующим равенством: I=EH2; E=I/H2; E=I*cos a/H2. где Е — освещенность поверхности в люксах; Н — высота установки светильника над освещаемой поверхностью в метрах; I — сила света в свечах; а — угол между направлением силы света и осью светильника. Яркость (В) — сила света, отражаемого от поверхности в направлении…

Искусственное освещение В основу нормирования принимаются следующие характеристики, определяющие степень напряжения зрительной работы. Точность зрительной работы, характеризуемая наименьшим размером рассматриваемой детали. Под термином «деталь» в нормах подразумевается не обрабатываемое изделие, а «объект», который приходится рассматривать в процессе работы, например нить ткани, царапина на поверхности изделия и т. д. Степень светлоты фона, на котором рассматривается объект….

Снижение освещенности на одну ступень допускается для производственных помещений с кратковременным пребыванием людей, а также в помещениях, где есть оборудование, не требующее постоянного обслуживания. При устройстве комбинированного освещения на рабочей поверхности освещенность от светильников общего освещения должна составлять не менее 10% норм комбинированного освещения, но для подростков, очевидно, она должна быть не менее 300 лк….

С давних пор известно явление люминесценции - вещество поглощает свет некоторой частоты, а само создает рассеянное п (лучение иной частоты. Еще в XIX в. Стокс установил правило - частота рассеянного света меньше частоты поглощенного (ν погл > ν рас); явление возникает лишь при достаточно большой частоте падающего света.

В ряде случаев люминесценция происходит практически безынерционно - возникает сразу и прекращается через 10 -7 -10 -8 с после прекращения освещения. Этот частный случай люминесценции иногда называют флюоресценцией. Но ряд веществ (фосфор и другие) обладают длительным послесвечением, длящимся (постепенно ослабевая) минуты и даже часы. Этот вид люминесценции получил название фосфоресценции. При нагревании тело теряет способность фосфоресцировать, но сохраняет способность люминесцировать.

Умножая обе части неравенства, выражающего правило Стокса, на постоянную Планка, получаем:

Следовательно, энергия фотона, поглощенного атомом, больше энергии излученного им фотона; таким образом, и здесь проявляется фотонный характер процессов поглощения света.

Имеющиеся отклонения от правила Стокса мы рассмотрим позже (§ 10.6).

В явлениях фотохимии - химических реакциях под действием света - также удалось установить существование наименьшей частоты, требующейся для возникновения реакции. Это вполне понятно с фотонной точки зрения: для возникновения реакции молекула должна получить достаточную добавочную энергию. Часто явление маскируется дополнительными эффектами. Так, известно, что смесь водорода Н 2 с хлором Сl 2 в темноте существует длительное время. Но даже при слабом освещении светом достаточно высокой частоты смесь очень быстро взрывается.

Причина лежит в возникновении вторичных реакций. Молекула водорода, поглотив фотон, может диссоциировать (основная реакция):

H 2 +hν -> Н + Н.

Так как атомарный водород гораздо более активен, чем молекулярный, то вслед за этим возникает вторичная реакция с выделением тепла:

Н+Сl 2 =НСl+Сl.

Таким образом, освобождаются атомы Н и Сl. Они взаимодействуют с молекулами С1 2 и Н 2 , и реакция нарастает очень бурно, будучи однажды возбуждена поглощением небольшого числа фотонов.

Среди различных фотохимических реакций заслуживают внимания реакции, имеющие место при процессе фотографирования. Фотоаппарат создает действительное (обычно уменьшенное) изображение на слое фотографической эмульсии, содержащей бромид серебра, способный к фотохимическим реакциям. Число прореагировавших молекул примерно пропорционально интенсивности’ света и времени его действия (длительности выдержки при фотографировании). Однако это число относительно очень мало; получившееся «скрытое изображение» подвергают процессу проявления, когда под действием соответствующих химических реактивов происходит дополнительное выделение бромида серебра у центров, зародившихся при фотохимической реакции. Затем следует процесс фиксирования (закрепления) изображения: непрореагировавший светочувствительный бромид серебра переводится в раствор и на фотослое остается металлическое серебро, определяющее прозрачность отдельных участков полученного негативного Изображения (чем больше света поглощено, тем темнее соответствующий участок). Освещая затем фотобумагу (или фотопленку) через негатив, получают на бумаге (после ее проявления и фиксирования) распределение освещенности, соответствующее снимаемому объекту (конечно, если соблюдены надлежащие условия съемки и обработки фотоматериала). При цветной фотографии пленка содержит три слоя, чувствительные к трем различным участкам спектра.

Эти слои служат друг для друга светофильтрами, и засветка каждого, из них определяется лишь определенным участком спектра. Будучи гораздо более сложным, чем черно-белый фотопроцесс, процесс цветного фотографирования в принципе от первого не отличается и является типичным фотонным процессом.

«Методическая разработка раздела программы» - Соответствие образовательных технологий и методов поставленным целям и содержанию программы. Социально-педагогическая значимость презентуемых результатов применения методической разработки. Диагностичность планируемых образовательных результатов. - Познавательная - преобразующая - общеучебная - самоорганизующая.

«Модульная образовательная программа» - Требования к разработке модуля. В немецких университетах учебный модуль состоит из дисциплин трех уровней. Структура модуля. Учебные курсы второго уровня входят в модуль на иных основаниях. Содержание по отдельному составному компоненту согласовывается с содержанием других составных компонентов модуля..

«Организация учебного процесса в школе» - Не поймешь. З-з-з! (звук и взгляд направлять по тексту). Приложение. Комплекс профилактических упражнений для верхних дыхательных путей. БЕГИ НА НОСОЧКАХ Цель: развитие слухового внимания, координации и чувства ритма. Й-а-а! Задачи физкультминуток. Критерии оценки здоровьесберегающей составляющей в работе учителя.

«Летний отдых» - Музыкальная релаксация, оздоровительный чай. Проведение мониторинга нормативно-правовой базы субъектов летней оздоровительной кампании. Раздел 2. Работа с кадрами. Продолжение изучения танца и практические занятия. Разработка рекомендаций по итогам прошедших этапов. Ожидаемые результаты. Этапы выполнения программы.

«Школа социального успеха» - Новая формула стандартов – требования: Начального образования. Тр - к результатам освоения основных образовательных программ. Организационный раздел. Попова Е.И. Введение ФГОС НОО. Предметные результаты. Целевой раздел. 2. Основная Образовательная Программа. 5. Материалы методического совещания.

«КСЕ» - Основные понятия системного подхода. Концепции современного естествознания (КСЕ). Наука как критическое познание. - Целое - часть - система - структура - элемент - множество - связь - отношение - уровень. Понятие «концепции». Гуманитарные науки Психология Социология Лингвистика Этика Эстетика. Физика Химия Биология Геология География.

Всего в теме 32 презентации

раздел химии, в котором изучаются Реакции химические, происходящие под действием света. Ф. тесно связана с оптикой (См. Оптика) и оптическими излучениями (См. Оптическое излучение). Первые фотохимические закономерности были установлены в 19 в. (см. Гротгуса закон, Бунзена – Роско закон (См. Бунзена - Роско закон)). Как самостоятельная область науки Ф. оформилась в 1-й трети 20 в., после открытия Эйнштейна закона, ставшего основным в Ф. Молекула вещества при поглощении кванта света переходит из основного в возбуждённое состояние, в котором она и вступает в химическую реакцию. Продукты этой первичной реакции (собственно фотохимической) часто участвуют в различных вторичных реакциях (т. н. темновые реакции), приводящих к образованию конечных продуктов. С этой точки зрения Ф. можно определить как химию возбуждённых молекул, образовавшихся при поглощении квантов света. Часто более или менее значительная часть возбуждённых молекул не вступает в фотохимическую реакцию, а возвращается в основное состояние в результате различного рода фотофизических процессов дезактивации. В ряде случаев эти процессы могут сопровождаться испусканием кванта света (флуоресценция или фосфоресценция). Отношение числа молекул, вступивших в фотохимическую реакцию, к числу поглощённых квантов света называются квантовым выходом фотохимической реакции. Квантовый выход первичной реакции не может быть больше единицы; обычно эта величина значительно меньше единицы из-за эффективной дезактивации. Вследствие же темновых реакций общий квантовый выход может быть значительно больше единицы.

Наиболее типичная фотохимическая реакция в газовой фазе – диссоциация молекул с образованием атомов и радикалов. Так, при действии коротковолнового ультрафиолетового (УФ) излучения, которому подвергается, например, кислород, образующиеся возбуждённые молекулы O 2 * диссоциируют на атомы:

O 2 + h ν O * 2 , O * 2 → O + O.

Эти атомы вступают во вторичную реакцию с O 2 , образуя озон: O + O 2 → O 3 .

Такие процессы происходят, например, в верхних слоях атмосферы под действием излучения Солнца (см. Озон в атмосфере).

При освещении смеси хлора с насыщенными углеводородами (См. Насыщенные углеводороды) (RH, где R – алкил) происходит хлорирование последних. Первичная реакция – диссоциация молекулы хлора на атомы, за ней следует цепная реакция (См. Цепные реакции) образования хлор углеводородов:

Cl 2 + h ν

Cl + RH → HCl + R

R + Cl 2 → RCl + Cl и т.д.

Общий квантовый выход этой цепной реакции значительно больше единицы.

При освещении ртутной лампой смеси паров ртути с водородом свет поглощается только атомами ртути. Последние, переходя в возбуждённое состояние, вызывают диссоциацию молекул водорода:

Hg* + H 2 → Hg + H + H.

Это пример сенсибилизированной фотохимической реакции. Под действием кванта света, обладающего достаточно высокой энергией, молекулы превращаются в ионы. Этот процесс, называемый фотоионизацией, удобно наблюдать с помощью масс-спектрометра.

Простейший фотохимический процесс в жидкой фазе – перенос электрона, т. е. вызванная светом окислительно-восстановительная реакция. Например, при действии УФ света на водный раствор, содержащий ионы Fe 2 + , Cr 2 + , V 2 + и др., электрон переходит от возбуждённого иона к молекуле воды, например:

(Fe 2 +)* + H 2 O → Fe 3 + + OH - + Н + .

Вторичные реакции приводят к образованию молекулы водорода. Перенос электрона, который может происходить при поглощении видимого света, характерен для многих красителей. Фотоперенос электрона с участием молекулы хлорофилла представляет собой первичный акт Фотосинтеза – сложного фотобиологического процесса, происходящего в зелёном листе под действием солнечного света.

В жидкой фазе молекулы органических соединений с кратными связями и ароматическими кольцами могут участвовать в разнообразных темновых реакциях. Кроме разрыва связей, приводящего к образованию радикалов и бирадикалов (например, карбенов (См. Карбены)), а также гетеролитических реакций замещения, известны многочисленные фотохимические процессы изомеризации (См. Изомеризация), перегруппировок, образования циклов и др. Существуют органические соединения, которые под действием УФ света изомеризуются и приобретают окраску, а при освещении видимым светом снова превращаются в исходные бесцветные соединения. Это явление, получившее название фотохромии, – частный случай обратимых фотохимических превращений.

Задача изучения механизма фотохимических реакций весьма сложна. Поглощение кванта света и образование возбуждённой молекулы происходят за время порядка 10 -15 сек. Для органических молекул с кратными связями и ароматическими кольцами, представляющих для Ф. наибольший интерес, существуют два типа возбуждённых состояний, которые различаются величиной суммарного спина молекулы. Последний может быть равен нулю (в основном состоянии) или единице. Эти состояния называются соответственно синглетными и триплетными. В синглетное возбуждённое состояние молекула переходит непосредственно при поглощении кванта света. Переход из синглетного в триплетное состояние происходит в результате фотофизического процесса. Время жизни молекулы в возбуждённом синглетном состоянии составляет Фотохимия 10 -8 сек; в триплетном состоянии – от 10 -5 –10 -4 сек (жидкие среды) до 20 сек (жёсткие среды, например твёрдые полимеры). Поэтому многие органические молекулы вступают в химические реакции именно в триплетном состоянии. По этой же причине концентрация молекул в этом состоянии может стать столь значительной, что молекулы начинают поглощать свет, переходя в высоковозбуждённое состояние, в котором они вступают в т. н. двухквантовые реакции. Возбуждённая молекула А* часто образует комплекс с невозбуждённой молекулой А или с молекулой В. Такие комплексы, существующие только в возбуждённом состоянии, называются соответственно эксимерами (AA)* или эксиплексами (AB)*. Эксиплексы часто являются предшественниками первичной химической реакции. Первичные продукты фотохимической реакции – радикалы, ионы, ион-радикалы и электроны – быстро вступают в дальнейшие темновые реакции за время, не превышающее обычно 10 -3 сек.

Один из наиболее эффективных методов исследования механизма фотохимических реакций – импульсный Фотолиз, сущность которого заключается в создании высокой концентрации возбуждённых молекул путём освещения реакционной смеси кратковременной, но мощной вспышкой света. Возникающие при этом короткоживущие частицы (точнее – возбуждённые состояния и названные выше первичные продукты фотохимической реакции) обнаруживаются по поглощению ими «зондирующего» луча. Это поглощение и его изменение во времени регистрируется при помощи фотоумножителя и осциллографа. Таким методом можно определить как спектр поглощения промежуточной частицы (и тем самым идентифицировать эту частицу), так и кинетику её образования и исчезновения. При этом применяются лазерные импульсы продолжительностью 10 -8 сек и даже 10 -11 –10 -12 сек, что позволяет исследовать самые ранние стадии фотохимического процесса.

Область практического приложения Ф. обширна. Разрабатываются способы химического синтеза на основе фотохимических реакций (см. Фотохимический реактор, Солнечная фотосинтетическая установка). Нашли применение, в частности для записи информации, фотохромные соединения. С применением фотохимических процессов получают рельефные изображения для микроэлектроники (См. Микроэлектроника), печатные формы для полиграфии (см. также Фотолитография). Практическое значение имеет фотохимическое хлорирование (главным образом насыщенных углеводородов). Важнейшая область практического применения Ф. – Фотография. Помимо фотографического процесса, основанного на фотохимическом разложении галогенидов серебра (главным образом AgBr), всё большее значение приобретают различные методы несеребряной фотографии; например, фотохимическое разложение диазосоединений (См. Диазосоединения) лежит в основе диазотипии (См. Диазотипия).

Лит.: Турро Н. Д., Молекулярная фотохимия, пер. с англ., М., 1967; Теренин А. Н., Фотоника молекул красителей и родственных органических соединений, Л., 1967; Калверт Д. Д., Питтс Д. Н., Фотохимия, пер. с англ., М., 1968; Багдасарьян Х. С., Двухквантовая фотохимия, М., 1976.

  • - ...

    Энциклопедический словарь нанотехнологий