Ряд фурье в комплексной форме. Комплексная форма тригонометрического ряда фурье Действительная и комплексная форма ряда фурье

Пусть вещественная функция удовлетворяет условиям Дирихле на промежутке -L , L . Запишем ее разложение в тригонометрический ряд Фурье:

Если в (10.1) выразить и через показательную функцию от мнимого аргумента:

то получим ряд

где в силу (10.2)

Последние три формулы можно объединить:

Ряд (10.3) с коэффициентами (10.4) называется тригонометрическим рядом Фурье в комплексной форме.

Пример 1. Разложить функцию, где - комплексное число, в ряд Фурье на промежутке.

Решение . Найдем коэффициенты Фурье:

Поскольку, то

Искомое разложение будет иметь вид

где учтено, что

Применяя к ряду (10.5) равенство Парсеваля

можно найти сумму еще одного числового ряда. Действительно, в нашем случае

Тогда из (10.6) следует

Упражнение 1. Доказать, что

Указание . Положить в (10.5) х = 0 и х = .

Упражнение 2. Доказать, что при

Интеграл Фурье

Сходимость интеграла Фурье

Пусть функция определена на всей числовой оси. Считая, что на произвольном конечном промежутке -L , L заданная функция удовлетворяет условиям Дирихле, представим ее тригонометрическим рядом Фурье в комплексной форме:

Частота k -й гармоники; .

Введя в (11.1) выражения (11.2), получим

При величина. Правая часть формулы (11.3) аналогична интегральной сумме для функции по переменной в промежутке. Поэтому можно ожидать, что после перехода в (11.3) к пределу при вместо ряда получим интеграл

Формула (11.4) называется интегральной формулой Фурье, а ее правая часть - интегралом Фурье.

Рассуждения, с помощью которых получена формула (11.4), не являются строгими и имеют лишь наводящий характер. Условия, при которых справедлива интегральная формула Фурье, устанавливает теорема, принимаемая нами без доказательства.

Теорема. Пусть функция, во-первых, абсолютно интегрируема на промежутке, т.е. интеграл сходится, и, во-вторых, удовлетворяет условиям Дирихле на каждом конечном промежутке (-L , L ). Тогда интеграл Фурье сходится (в смысле главного значения) всюду к, т.е. равенство (11.4) выполняется при всех х из промежутка. Здесь, по-прежнему, предполагается, что в точке разрыва значение функции равно полусумме ее односторонних пределов в этой точке.

Преобразование Фурье

Интегральную формулу Фурье (11.4) преобразуем следующим образом. Положим

Если функция непрерывна и абсолютно интегрируема на всей оси, то функция непрерывна на промежутке. Действительно, так как, то

и, поскольку интеграл справа сходится, то сходится интеграл слева. следовательно, интеграл в (12.1) сходится абсолютно. Равенство (12.2) выполняется одновременно для всех, поэтому интеграл (12.1) сходится равномерно относительно. Отсюда и следует, что функция непрерывна (точно так же, как из равномерной сходимости ряда, составленного из непрерывных функций, следует непрерывность его суммы).

Из (11.4) получим

Комплексная функция, определяемая формулой (12.1), называется преобразованием Фурье или Фурье-образом функции. В свою очередь, формула (12.3) определяет как обратное преобразование Фурье, или прообраз функции. Равенство (12.3) при заданной функции можно рассматривать, как интегральное уравнение относительно функции, решение которого дается формулой (12.1). И, наоборот, решение интегрального уравнения (12.1) относительно функции при заданной дает формула (12.3).

В формуле (12.3) выражение задает, условно говоря, пакет комплексных гармоник с частотами, непрерывно распределенными на промежутке и суммарной комплексной амплитудой. Функция называется спектральной плотностью. Формулу (12.2), записанную в виде

можно трактовать, как разложение функции в сумму пакетов гармоник, частоты которых образуют сплошной спектр, распределенный на промежутке.

Равенства Парсеваля. Пусть и - Фурье-образы вещественных функций и соответственно. Тогда

т.е. скалярные произведения и нормы функций являются инвариантами преобразования Фурье. Докажем это утверждение. по определению скалярного произведения имеем. Заменив функцию ее выражением (12.3) через Фурье-образ, получим

В силу (12.1)

Поэтому, т.е. формула (12.4) доказана. Формула (12.5) получается из (12.4) при.

Косинус- и синус-преобразования Фурье. Если вещественная функция четна, то ее Фурье-образ, который здесь будем обозначать, также является вещественной четной функцией. Действительно,

Последний интеграл, вследствие нечетности подынтегральной функции, обращается в нуль. Таким образом,

Здесь использовано свойство (7.1) четных функций.

Из (12.6) следует, что функция вещественна и четным образом зависит от, так как входит в (12.6) только через косинус.

Формула (12.3) обратного преобразования Фурье в этом случае дает

Так как и - соответственно четная и нечетная функции переменной, то

Формулы (12.6) и (12.7) определяют косинус-преобразование Фурье.

Аналогично, если вещественная функция нечетна, то ее преобразование Фурье, где - вещественная нечетная функция от. При этом

Равенства (12.8), (12.9) задают синус-преобразование Фурье.

Заметим, что в формулы (12.6) и (12.8) входят значения функции только для. Поэтому косинус- и синус-преобразования Фурье можно применять и к функции, определенной на полубесконечном промежутке. В этом случае при интегралы в формулах (12.7) и (12.9) сходятся к заданной функции, а при к ее четному и нечетному продолжениям соответственно.

Которые уже порядком поднадоели. И я чувствую, что настал момент, когда из стратегических запасов теории пора извлечь новые консервы. Нельзя ли разложить функцию в ряд как-нибудь по-другому? Например, выразить отрезок прямой линии через синусы и косинусы? Кажется невероятным, но такие, казалось бы, далекие друг от друга функции поддаются
«воссоединению». Помимо примелькавшихся степеней в теории и практике существуют и другие подходы к разложению функции в ряд.

На данном уроке мы познакомимся с тригонометрическим рядом Фурье, коснёмся вопроса его сходимости и суммы и, конечно же, разберём многочисленные примеры на разложение функций в ряд Фурье. Искренне хотелось назвать статью «Ряды Фурье для чайников», но это было бы лукавством, поскольку для решения задач потребуются знания других разделов математического анализа и некоторый практический опыт. Поэтому преамбула будет напоминать подготовку космонавтов =)

Во-первых, к изучению материалов страницы следует подойти в отличной форме. Выспавшимися, отдохнувшими и трезвыми. Без сильных эмоций по поводу сломанной лапы хомячка и навязчивых мыслей о тяготах жизни аквариумных рыбок. Ряд Фурье не сложен с точки зрения понимания, однако практические задания требуют просто повышенной концентрации внимания – в идеале следует полностью отрешиться от внешних раздражителей. Ситуация усугубляется тем, что не существует лёгкого способа проверки решения и ответа. Таким образом, если ваше самочувствие ниже среднего, то лучше заняться чем-нибудь попроще. Правда.

Во-вторых, перед полётом в космос необходимо изучить приборную панель космического корабля. Начнём со значений функций, которые должны щёлкаться на автомате:

При любом натуральном значении :

1) . И в самом деле, синусоида «прошивает» ось абсцисс через каждое «пи»:
. В случае отрицательных значений аргумента результат, само собой, будет таким же: .

2) . А вот это знали не все. Косинус «пи эн» представляет собой эквивалент «мигалки»:

Отрицательный аргумент дела не меняет: .

Пожалуй, достаточно.

И, в-третьих, уважаемый отряд космонавтов, необходимо уметь… интегрировать .
В частности, уверенно подводить функцию под знак дифференциала , интегрировать по частям и быть в ладах с формулой Ньютона-Лейбница . Начнём важные предполётные упражнения. Категорически не рекомендую пропускать, чтобы потом не плющило в невесомости:

Пример 1

Вычислить определённые интегралы

где принимает натуральные значения.

Решение : интегрирование проводится по переменной «икс» и на данном этапе дискретная переменная «эн» считается константой. Во всех интегралах подводим функцию под знак дифференциала :

Короткая версия решения, к которой хорошо бы пристреляться, выглядит так:

Привыкаем:

Четыре оставшихся пункта самостоятельно. Постарайтесь добросовестно отнестись к заданию и оформить интегралы коротким способом. Образцы решений в конце урока.

После КАЧЕСТВЕННОГО выполнения упражнений надеваем скафандры
и готовимся к старту!

Разложение функции в ряд Фурье на промежутке

Рассмотрим некоторую функцию , которая определена по крайне мере на промежутке (а, возможно, и на бОльшем промежутке). Если данная функция интегрируема на отрезке , то её можно разложить в тригонометрический ряд Фурье :
, где – так называемые коэффициенты Фурье .

При этом число называют периодом разложения , а число – полупериодом разложения .

Очевидно, что в общем случае ряд Фурье состоит из синусов и косинусов:

Действительно, распишем его подробно:

Нулевой член ряда принято записывать в виде .

Коэффициенты Фурье рассчитываются по следующим формулам:

Прекрасно понимаю, что начинающим изучать тему пока малопонятны новые термины: период разложения , полупериод , коэффициенты Фурье и др. Без паники, это не сравнимо с волнением перед выходом в открытый космос. Во всём разберёмся в ближайшем примере, перед выполнением которого логично задаться насущными практическими вопросами:

Что нужно сделать в нижеследующих заданиях?

Разложить функцию в ряд Фурье. Дополнительно нередко требуется изобразить график функции , график суммы ряда , частичной суммы и в случае изощрённых профессорский фантазий – сделать что-нибудь ещё.

Как разложить функцию в ряд Фурье?

По существу, нужно найти коэффициенты Фурье , то есть, составить и вычислить три определённых интеграла .

Пожалуйста, перепишите общий вид ряда Фурье и три рабочие формулы к себе в тетрадь. Я очень рад, что у некоторых посетителей сайта прямо на моих глазах осуществляется детская мечта стать космонавтом =)

Пример 2

Разложить функцию в ряд Фурье на промежутке . Построить график , график суммы ряда и частичной суммы .

Решение : первая часть задания состоит в разложении функции в ряд Фурье.

Начало стандартное, обязательно записываем, что:

В данной задаче период разложения , полупериод .

Разложим функцию в ряд Фурье на промежутке :

Используя соответствующие формулы, найдём коэффициенты Фурье . Теперь нужно составить и вычислить три определённых интеграла . Для удобства я буду нумеровать пункты:

1) Первый интеграл самый простой, однако и он уже требует глаз да глаз:

2) Используем вторую формулу:

Данный интеграл хорошо знаком и берётся он по частям :

При нахождении использован метод подведения функции под знак дифференциала .

В рассматриваемом задании сподручнее сразу использовать формулу интегрирования по частям в определённом интеграле :

Пара технических замечаний. Во-первых, после применения формулы всё выражение нужно заключить в большие скобки , так как перед исходным интегралом находится константа . Не теряем её ! Скобки можно раскрыть на любом дальнейшем шаге, я это сделал в самую последнюю очередь. В первом «куске» проявляем крайнюю аккуратность в подстановке, как видите, константа не при делах, и пределы интегрирования подставляются в произведение . Данное действие выделено квадратными скобками. Ну а интеграл второго «куска» формулы вам хорошо знаком из тренировочного задания;-)

И самое главное – предельная концентрация внимания!

3) Ищем третий коэффициент Фурье:

Получен родственник предыдущего интеграла, который тоже интегрируется по частям :

Этот экземпляр чуть сложнее, закомментирую дальнейшие действия пошагово:

(1) Выражение полностью заключаем в большие скобки . Не хотел показаться занудой, слишком уж часто теряют константу .

(2) В данном случае я немедленно раскрыл эти большие скобки. Особое внимание уделяем первому «куску»: константа курит в сторонке и не участвует в подстановке пределов интегрирования ( и ) в произведение . Ввиду загромождённости записи это действие снова целесообразно выделить квадратными скобками. Со вторым «куском» всё проще: здесь дробь появилась после раскрытия больших скобок, а константа – в результате интегрирования знакомого интеграла;-)

(3) В квадратных скобках проводим преобразования , а в правом интеграле – подстановку пределов интегрирования.

(4) Выносим «мигалку» из квадратных скобок: , после чего раскрываем внутренние скобки: .

(5) Сокращаем 1 и –1 в скобках, проводим окончательные упрощения.

Наконец-то найдены все три коэффициента Фурье:

Подставим их в формулу :

При этом не забываем разделить пополам. На последнем шаге константа («минус два»), не зависящая от «эн», вынесена за пределы суммы.

Таким образом, мы получили разложение функции в ряд Фурье на промежутке :

Изучим вопрос сходимости ряда Фурье. Я объясню теорию, в частности теорему Дирихле , буквально «на пальцах», поэтому если вам необходимы строгие формулировки, пожалуйста, обратитесь к учебнику по математическому анализу (например, 2-й том Бохана; или 3-й том Фихтенгольца, но в нём труднее) .

Во второй части задачи требуется изобразить график , график суммы ряда и график частичной суммы .

График функции представляет собой обычную прямую на плоскости , которая проведена чёрным пунктиром:

Разбираемся с суммой ряда . Как вы знаете, функциональные ряды сходятся к функциям. В нашем случае построенный ряд Фурье при любом значении «икс» сойдётся к функции , которая изображена красным цветом. Данная функция терпит разрывы 1-го рода в точках , но определена и в них (красные точки на чертеже)

Таким образом: . Легко видеть, что заметно отличается от исходной функции , именно поэтому в записи ставится значок «тильда», а не знак равенства.

Изучим алгоритм, по которому удобно строить сумму ряда.

На центральном интервале ряд Фурье сходится к самой функции (центральный красный отрезок совпадает с чёрным пунктиром линейной функции).

Теперь немного порассуждаем о природе рассматриваемого тригонометрического разложения. В ряд Фурье входят только периодические функции (константа, синусы и косинусы), поэтому сумма ряда тоже представляет собой периодическую функцию .

Что это значит в нашем конкретном примере? А это обозначает то, что сумма ряда непременно периодична и красный отрезок интервала обязан бесконечно повторяться слева и справа.

Думаю, сейчас окончательно прояснился смысл фразы «период разложения ». Упрощённо говоря, через каждые ситуация вновь и вновь повторяется.

На практике обычно достаточно изобразить три периода разложения, как это сделано на чертеже. Ну и ещё «обрубки» соседних периодов – чтобы было понятно, что график продолжается.

Особый интерес представляют точки разрыва 1-го рода . В таких точках ряд Фурье сходится к изолированным значениям, которые расположены ровнёхонько посередине «скачка» разрыва (красные точки на чертеже). Как узнать ординату этих точек? Сначала найдём ординату «верхнего этажа»: для этого вычислим значение функции в крайней правой точке центрального периода разложения: . Чтобы вычислить ординату «нижнего этажа» проще всего взять крайнее левое значение этого же периода: . Ордината среднего значения – это среднее арифметическое суммы «верха и низа»: . Приятным является тот факт, что при построении чертежа вы сразу увидите, правильно или неправильно вычислена середина.

Построим частичную сумму ряда и заодно повторим смысл термина «сходимость». Мотив известен ещё из урока о сумме числового ряда . Распишем наше богатство подробно:

Чтобы составить частичную сумму необходимо записать нулевой + ещё два члена ряда. То есть,

На чертеже график функции изображен зелёным цветом, и, как видите, он достаточно плотно «обвивает» полную сумму . Если рассмотреть частичную сумму из пяти членов ряда , то график этой функции будет ещё точнее приближать красные линии, если сто членов – то «зелёный змий» фактически полностью сольётся с красными отрезками и т.д. Таким образом, ряд Фурье сходится к своей сумме .

Интересно отметить, что любая частичная сумма – это непрерывная функция , однако полная сумма ряда всё же разрывна.

На практике не так уж редко требуется построить и график частичной суммы. Как это сделать? В нашем случае необходимо рассмотреть функцию на отрезке , вычислить её значения на концах отрезка и в промежуточных точках (чем больше точек рассмотрите – тем точнее будет график). Затем следует отметить данные точки на чертеже и аккуратно изобразить график на периоде , после чего «растиражировать» его на соседние промежутки. А как иначе? Ведь приближение – это тоже периодическая функция… …чем-то мне её график напоминает ровный ритм сердца на дисплее медицинского прибора.

Выполнять построение, конечно, не сильно удобно, так как и приходится проявлять сверхаккуратность, выдерживая точность не меньше, чем до половины миллиметра. Впрочем, читателей, которые не в ладах с черчением, обрадую – в «реальной» задаче выполнять чертёж нужно далеко не всегда, где-то в 50% случаев требуется разложить функцию в ряд Фурье и всё.

После выполнения чертежа завершаем задание:

Ответ :

Во многих задачах функция терпит разрыв 1-го рода прямо на периоде разложения:

Пример 3

Разложить в ряд Фурье функцию , заданную на отрезке . Начертить график функции и полной суммы ряда.

Предложенная функция задана кусочным образом (причём, заметьте, только на отрезке ) и терпит разрыв 1-го рода в точке . Можно ли вычислить коэффициенты Фурье? Без проблем. И левая и правая части функции интегрируемы на своих промежутках, поэтому интегралы в каждой из трёх формул следует представить в виде суммы двух интегралов. Посмотрим, например, как это делается у нулевого коэффициента:

Второй интеграл оказался равным нулю, что убавило работы, но так бывает далеко не всегда.

Аналогично расписываются два других коэффициента Фурье.

Как изобразить сумму ряда? На левом интервале чертим отрезок прямой , а на интервале – отрезок прямой (жирно-жирно выделяем участок оси ). То есть, на промежутке разложения сумма ряда совпадает с функцией везде, кроме трёх «нехороших» точек. В точке разрыва функции ряд Фурье сойдётся к изолированному значению, которое располагается ровно посередине «скачка» разрыва. Его нетрудно увидеть и устно: левосторонний предел: , правосторонний предел: и, очевидно, что ордината средней точки равна 0,5.

В силу периодичности суммы , картинку необходимо «размножить» на соседние периоды, в частности изобразить то же самое на интервалах и . При этом, в точках ряд Фурье сойдётся к срединным значениям.

По сути-то ничего нового здесь нет.

Постарайтесь самостоятельно справиться с данной задачей. Примерный образец чистового оформления и чертёж в конце урока.

Разложение функции в ряд Фурье на произвольном периоде

Для произвольного периода разложения , где «эль» – любое положительное число, формулы ряда Фурье и коэффициентов Фурье отличаются немного усложнённым аргументом синуса и косинуса:

Если , то получаются формулы промежутка , с которых мы начинали.

Алгоритм и принципы решения задачи полностью сохраняются, но возрастает техническая сложность вычислений:

Пример 4

Разложить функцию в ряд Фурье и построить график суммы.

Решение : фактически аналог Примера №3 с разрывом 1-го рода в точке . В данной задаче период разложения , полупериод . Функция определена только на полуинтервале , но это не меняет дела – важно, что оба куска функции интегрируемы.

Разложим функцию в ряд Фурье:

Поскольку функция разрывна в начале координат, то каждый коэффициент Фурье очевидным образом следует записать в виде суммы двух интегралов:

1) Первый интеграл распишу максимально подробно:

2) Тщательным образом вглядываемся в поверхность Луны:

Второй интеграл берём по частям :

На что следует обратить пристальное внимание, после того, как мы звёздочкой открываем продолжение решения?

Во-первых, не теряем первый интеграл , где сразу же выполняем подведение под знак дифференциала . Во-вторых, не забываем злополучную константу перед большими скобками и не путаемся в знаках при использовании формулы . Большие скобки, всё-таки удобнее раскрывать сразу же на следующем шаге.

Остальное дело техники, затруднения может вызвать только недостаточный опыт решенияинтегралов.

Да, не зря именитые коллеги французского математика Фурье возмущались – как это тот посмел раскладывать функции в тригонометрические ряды?! =) К слову, наверное, всем интересен практический смысл рассматриваемого задания. Сам Фурье работал над математической моделью теплопроводности, а впоследствии ряд, названный его именем стал применяться для исследования многих периодических процессов, коих в окружающем мире видимо-невидимо. Сейчас, кстати, поймал себя на мысли, что не случайно сравнил график второго примера с периодическим ритмом сердца. Желающие могут ознакомиться с практическим применением преобразования Фурье в сторонних источниках. …Хотя лучше не надо – будет вспоминаться, как Первая Любовь =)

3) Учитывая неоднократно упоминавшиеся слабые звенья, разбираемся с третьим коэффициентом:

Интегрируем по частям:

Подставим найдённые коэффициенты Фурье в формулу , не забывая поделить нулевой коэффициент пополам:

Построим график суммы ряда. Кратко повторим порядок действий: на интервале строим прямую , а на интервале – прямую . При нулевом значении «икс» ставим точку посередине «скачка» разрыва и «тиражируем» график на соседние периоды:


На «стыках» периодов сумма также будет равна серединам «скачка» разрыва .

Готово. Напоминаю, что сама функция по условию определена только на полуинтервале и, очевидно, совпадает с суммой ряда на интервалах

Ответ :

Иногда кусочно-заданная функция бывает и непрерывна на периоде разложения. Простейший образец: . Решение (см. 2-й том Бохана) такое же, как и двух предыдущих примерах: несмотря на непрерывность функции в точке , каждый коэффициент Фурье выражается суммой двух интегралов.

На промежутке разложения точек разрыва 1-го рода и/или точек «стыка» графика может быть и больше (две, три и вообще любое конечное количество). Если функция интегрируема на каждой части, то она также разложима в ряд Фурье. Но из практического опыта такую жесть что-то не припоминаю. Тем не менее, встречаются более трудные задания, чем только что рассмотренное, и в конце статьи для всех желающих есть ссылки на ряды Фурье повышенной сложности.

А пока расслабимся, откинувшись в креслах и созерцая бескрайние звёздные просторы:

Пример 5

Разложить функцию в ряд Фурье на промежутке и построить график суммы ряда.

В данной задаче функция непрерывна на полуинтервале разложения, что упрощает решение. Всё очень похоже на Пример №2. С космического корабля никуда не деться – придётся решать =) Примерный образец оформления в конце урока, график прилагается.

Разложение в ряд Фурье чётных и нечётных функций

С чётными и нечётными функциями процесс решения задачи заметно упрощается. И вот почему. Вернёмся к разложению функции в ряд Фурье на периоде «два пи» и произвольном периоде «два эль» .

Предположим, что наша функция чётна. Общий же член ряда, как вы видите, содержит чётные косинусы и нечётные синусы. А если мы раскладываем ЧЁТНУЮ функцию, то зачем нам нечётные синусы?! Давайте обнулим ненужный коэффициент: .

Таким образом, чётная функция раскладывается в ряд Фурье только по косинусам :

Поскольку интегралы от чётных функций по симметричному относительно нуля отрезку интегрирования можно удваивать, то упрощаются и остальные коэффициенты Фурье.

Для промежутка :

Для произвольного промежутка:

К хрестоматийным примерам, которые есть практически в любом учебнике по матанализу, относятся разложения чётных функций . Кроме того, они неоднократно встречались и в моей личной практике:

Пример 6

Дана функция . Требуется:

1) разложить функцию в ряд Фурье с периодом , где – произвольное положительное число;

2) записать разложение на промежутке , построить функцию и график полной суммы ряда .

Решение : в первом пункте предлагается решить задачу в общем виде, и это очень удобно! Появится надобность – просто подставьте своё значение.

1) В данной задаче период разложения , полупериод . В ходе дальнейших действий, в частности при интегрировании, «эль» считается константой

Функция является чётной, а значит, раскладывается в ряд Фурье только по косинусам: .

Коэффициенты Фурье ищем по формулам . Обратите внимание на их безусловные преимущества. Во-первых, интегрирование проводится по положительному отрезку разложения, а значит, мы благополучно избавляемся от модуля , рассматривая из двух кусков только «икс». И, во-вторых, заметно упрощается интегрирование.

Два:

Интегрируем по частям:

Таким образом:
, при этом константу , которая не зависит от «эн», выносим за пределы суммы.

Ответ :

2) Запишем разложение на промежутке , для этого в общую формулу подставляем нужное значение полупериода :

Тригонометрическим рядом Фурье называется ряд вида

a 0 /2 + a 1 cosx + b 1 sinx + a 2 cos2x + b 2 sin2x + ... + a n cosnx + b n sinnx + ...

где числа a 0 , a 1 , b 1 , a 2 , b 2 , ..., a n , b n , ... - коэффициенты Фурье.

Более сжатая запись ряда Фурье с символом "сигма":

Как мы только что установили, в отличие от степенного ряда , в ряде Фурье вместо простейших функций взяты тригонометрические функции

1/2, cosx , sinx , cos2x , sin2x , ..., cosnx , sinnx , ... .

Коэффициенты Фурье вычисляются по следующим формулам:

,

,

.

Все вышеперечисленные функции в ряде Фурье являются периодическими функциями с периодом 2π . Каждый член тригонометрического ряда Фурье является периодической функцией с периодом 2π .

Поэтому и любая частичная сумма ряда Фурье имеет период 2π . Отсюда следует, что если ряд Фурье сходится на отрезке [-π , π ] , то он сходится на всей числовой прямой и его сумма, будучи пределом последовательности периодических частичных сумм, является периодической функцией с периодом 2π .

Сходимость ряда Фурье и сумма ряда

Пусть функция F (x ) , определённая на всей числовой прямой и периодическая с периодом 2π , является периодическим продолжением функции f (x ) , если на отрезке [-π , π ] имеет место F (x ) = f (x )

Если на отрезке [-π , π ] ряд Фурье сходится к функции f (x ) , то он сходится на всей числовой прямой к её периодическому продолжению.

Ответ на вопрос о том, при каких условиях ряд Фурье функции f (x ) сходится к этой функции, даёт следующая теорема.

Теорема. Пусть функция f (x ) и её производная f " (x ) - непрерывные на отрезке [-π , π ] или же имеют на нём конечное число точек разрыва 1-го рода. Тогда ряд Фурье функции f (x ) сходится на всей числовой прямой, причём в каждой точке x , принадлежащей отрезку [-π , π ] , в которой f (x ) непрерывна, сумма ряда равна f (x ) , а в каждой точке x 0 разрыва функции сумма ряда равна среднему арифметическому пределов функции f (x ) справа и слева:

,

где и .

На концах отрезка [-π , π ] сумма ряда равна среднему арифметическому значений функции в крайней левой и крайней правой точках периода разложения:

.

В любой точке x , принадлежащей отрезку [-π , π ] , сумма ряда Фурье равна F (x ) , если x - точка непрерывности F (x ) , и равна среднему арифметическому пределов F (x ) слева и справа:

,

если x - точка разрыва F (x ) , где F (x ) - периодическое продолжение f (x ) .

Пример 1. Периодическая функция f (x ) с периодом 2π определена следующим образом:

Проще эта функция записывается как f (x ) = |x | . Разложить функцию в ряд Фурье, определить сходимость ряда и сумму ряда.

Решение. Определим коэффициенты Фурье этой функции:

Теперь у нас есть всё, чтобы получить ряд Фурье данной функции:

Этот ряд сходится во всех точках, и его сумма равна данной функции.

Решить задачу на ряды Фурье самостоятельно, а затем посмотреть решение

Ряды Фурье для чётных и нечётных функций

Пусть функция f (x ) определена на отрезке [-π , π ] и является чётной, т. е. f (- x ) = f (x ) . Тогда её коэффициенты b n равны нулю. А для коэффициентов a n верны следующие формулы:

,

.

Пусть теперь функция f (x ) , определённая на отрезке [-π , π ] , нечётная, т.е. f (x ) = - f (- x ) . Тогда коэффициенты Фурье a n равны нулю, а коэффициенты b n определяется формулой

.

Как видно из формул, выведенных выше, если функция f (x ) чётная, то ряд Фурье содержит только косинусы, а если нечётная, то только синусы .

Пример 3.

Решение. Это нечётная функция, поэтому её коэффициенты Фурье , а чтобы найти , нужно вычислить определённый интеграл :

.

Это равенство справедливо для любого . В точках сумма ряда Фурье по приведённой во втором параграфе теореме не совпадает со значениями функции , а равна . Вне отрезка сумма ряда является периодическим продолжением функции , её график приводился выше в качестве иллюстрации суммы ряда.

Пример 4. Разложить в ряд Фурье функцию .

Решение. Это чётная функция, поэтому её коэффициенты Фурье , а чтобы найти , нужно вычислить определённые интегралы :

Получаем ряд Фурье данной функции:

.

Это равенство справедливо для любого , так как в точках сумма ряда Фурье в данном случае совпадает со значениями функции , поскольку .

Ряд Фурье по любой ортогональной системе функций

Последовательность функций непрерывных на отрезке [a ,b ], называется ортогональной системой функции на отрезке [a ,b ], если все функции последовательности попарно ортогональны на этом отрезке, т. е. если

Система называется ортогональной и нормированной (ортонормированной) на отрезке ,

если выполняется условие

Пусть теперь f (x ) - любая функция непрерывная на отрезке [a ,b ]. Рядом Фурье такой функции f (x ) на отрезке [a ,b ] по ортогональной системе называется ряд:

коэффициенты которого определяются равенством:

N=1,2,...

Если ортогональная система функций на отрезке [a ,b ] ортонормированная, то в этом случаи

где n =1,2,...

Пусть теперь f (x ) - любая функция, непрерывная или имеющая конечное число точек разрыва первого рода на отрезке [a ,b ]. Рядом Фурье такой функции f (x ) на томже отрезке

по ортогональной системе называется ряд:

Если ряд Фурье функции f (x ) по системе (1) сходится к функции f (x ) в каждой ее точке непрерывности, принадлежащей отрезку [a ,b ]. В этом случае говорят что f (x ) на отрезке [a ,b ] разлагается в ряд по ортогональной системе (1).

Комплексная форма ряда Фурье

Выражение называется комплексной формой ряда Фурье функцииf (x ), если определяется равенством

,где

Переход от ряда Фурье в комплексной форме к ряду в действительной форме и обратно осуществляется с помощью формул:

(n =1,2, . . .)

Задача о колебании струны

Пусть в состоянии равновесия натянута струна длинной l с концами x= 0 и x =l . Предположим, что струна выведена из состояния равновесия и совершает свободные колебания. Будем рассматривать малые колебания струны, происходящие в вертикальной плоскости.

При сделанных выше допущениях можно показать, что функция u (x,t ) , характеризующая положение струны в каждый момент времени t, удовлетворяет уравнению

(1) , где а - положительное число.

Наша з а д а ч а - найти функцию u (x,t ) , график которой дает форму струны в любой момент времени t , т. е. найти решение уравнения (1) при граничных:

и начальных условиях:

Сначала будем искать решения уравнения (1), удовлетворяющие граничным условиям(2). Нетрудно увидеть, что u (x ,t ) 0 является решением уравнения (1), удовлетворяющие граничным условиям(2). Будем искать решения, не равные тождественно 0, представимые в виде произведенияu (x,t )=X (x )T (t ), (4) , где , .

Подстановка выражения (4) в уравнение (1) дает:

Из которого наша задача сводится к отысканию решений уравнений:

Используя это условие X (0)=0, X (l )=0, докажем, что отрицательное число, разобрав все случаи.

a) Пусть ТогдаX ”=0 и его общее решение запишется так:

откуда и ,что невозможно, так как мы рассматриваем решения, не обращающиеся тождественно в нуль.

б) Пусть . Тогда решив уравнение

получим , и, подчинив, найдем, что

в) Если то

Уравнения имеют корни:

где -произвольные постоянные. Из начального условия найдем:

откуда , т. е.

(n =1,2,...)

(n =1,2,...).

Учитывая это, можно записать:

(N=1,2,...).

и, следовательно

, (n =1,2,...),

но так как A и B разные для различных значений n то имеем

, (n =1,2,...),

где и произвольные постоянные, которые попытаемся определить таким образом, чтобы ряд удовлетворял уравнению (1), граничным условиям (2) и начальным условиям (3).

Итак, подчиним функцию u (x,t ) начальным условиям, т. е. подберем и так, чтобы выполнялись условия

Эти равенства являются соответственно разложениями функций и на отрезки в ряд Фурье по синусам. (Это значит что коэффициенты будут вычисляться как для нечетной функций). Таким образом, решение о колебании струны с заданным граничными и начальными условиями дается формулой

(n =1,2,...)

Интеграл Фурье

Достаточные условия представимости функции в интеграл Фурье.

Для того, чтобы f (x ) была представлена интегралом Фурье во всех точках непрерывности и правильных точках разрыва, достаточно:

1) абсолютной интегрируемости на

(т.е. интеграл сходится)

2) на любом конечном отрезке [-L , L ] функция была бы кусочно-гладкой

3) в точках разрыва функции, ее интеграл Фурье определяется полусуммой левого и правого пределов в этих точках, а в точках непрерывности к самой функции f (x )

Интегралом Фурье функции f(x) называется интеграл вида:

Где ,

.

Интеграл Фурье для четной и нечетной функции

Пусть f (x )-четная функция, удовлетворяющая условиям представимости интегралом Фурье.

Учитывая, что , а также свойство интегралов по симметричному относительно точкиx =0 интервалу от четных функций, из равенства (2) получаем:

(3)

Таким образом, интеграл Фурье четной функции f (x ) запишется так:

,

где a (u ) определяется равенством (3).

Рассуждая аналогично, получим, для нечетной функции f (x ) :

(4)

и, следовательно, интеграл Фурье нечетной функции имеет вид:

,

где b (u ) определяется равенством (4).

Комплексная форма интеграла Фурье

, (5)

.

Выражение в форме (5) является комплексной формой интеграла Фурье для функции f (x ).

Если в формуле (5) заменить c (u ) его выражением, то получим:

, где правая часть формулы называется двойным интегралом

Фуpье в комплексной форме. Переход от интеграла Фурье в комплексной форме к интегралу

в действительной форме и обратно осуществим с помощью формул:

Формулы дискретного преобразования Фурье

Обратное преобразование Фурье.

где n =1,2,... , k =1,2,...

Дискретным преобразованием Фурье - называется N -мерный вектор

при этом, .

Глава 2

ПРАКТИЧЕСКАЯ ЧАСТЬ