Признаки сходимости числовых рядов. Числовые ряды

Определение 1.1. Числовым рядом с общим членом называют последовательность чисел соединенных знаком сложения, т. е. выражение вида:

Такой ряд записывают также в виде

Пример 1.1. Если то ряд имеет вид:

Иногда при записи ряда выписывают только несколько его первых членов. Это делают лишь тогда, когда закономерность, характерная для членов ряда, легко усматривается. Строго говоря, такой способ задания ряда не является математически корректным, так как получение формулы общего члена по нескольким первым членам ряда - задача, не имеющая однозначного решения.

Пример 1.2. Напишем одну из возможных формул для общего члена ряда, зная его первые 4 члена:

Решение. Рассмотрим сначала последовательность числителей 2, 5, 8, 11. Они образуют арифметическую прогрессию, первый член которой равен 2, а разность равна 3. Это позволяет в качестве общего выражения для числителя взять формулу общего члена арифметической прогрессии: Знаменатели 2, 6, 18, 54 образуют геометрическую прогрессию с

первым членом 2 и знаменателем 3. В качестве их общего выражения можно взять формулу общего члена геометрической прогрессии Итак, общий член ряда будет иметь следующий вид:

Следует отметить, что в качестве общего члена можно было бы принять и более сложное выражение

Пусть задан положительный числовой ряд $ \sum_{n=1} ^\infty a_n $. Сформулируем необходимый признак сходимости ряда:

  1. Если ряд сходится, то предел его общего члена равен нулю: $$ \lim _{n \to \infty} a_n = 0 $$
  2. Если предел общего члена ряда не равен нулю, то ряд расходится: $$ \lim _{n \to \infty} a_n \neq 0 $$

Обобщенный гармонический ряд

Данный ряд записывается следующим образом $ \sum_{n=1} ^\infty \frac{1}{n^p} $. Причем в зависимости от $ p $ ряд сходится или расходится:

  1. Если $ p = 1 $, то ряд $ \sum_{n=1} ^\infty \frac{1}{n} $ расходится и называется гармоническим, несмотря на то, что общий член $ a_n = \frac{1}{n} \to 0 $. Почему так? В замечании говорилось, что необходимый признак не даёт ответа о сходимости, а только о расходимости ряда. Поэтому, если применить достаточный признак, такой как интегральный признак Коши, то станет ясно, что ряд расходится!
  2. Если $ p \leqslant 1 $, то ряд расходится. Пример,$ \sum_{n=1} ^\infty \frac{1}{\sqrt{n}} $, в котором $ p = \frac{1}{2} $
  3. Если $ p > 1 $, то ряд сходится. Пример, $ \sum_{n=1} ^\infty \frac{1}{\sqrt{n^3}} $, в котором $ p = \frac{3}{2} > 1 $

Примеры решений

Пример 1
Доказать расходимость ряда $ \sum_{n=1} ^\infty \frac{n}{6n+1} $
Решение

Ряд положительный, записываем общий член:

$$ a_n = \frac{n}{6n+1} $$

Вычисляем предел при $ n \to \infty $:

$$ \lim _{n \to \infty} \frac{n}{6n+1} = \frac{\infty}{\infty} = $$

Выносим за скобку $ n $ в знаменателе, а затем выполняем на него сокращение:

$$ = \lim_{n \to \infty} \frac{n}{n(6+\frac{1}{n})} = \lim_{n \to \infty} \frac{1}{6 + \frac{1}{n}} = \frac{1}{6} $$

Так как получили, что $ \lim_{n\to \infty} a_n = \frac{1}{6} \neq 0 $, то необходимый признак Коши не выполнен и ряд следовательно расходится.

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
Ряд расходится

ВЫСШАЯ МАТЕМАТИКА

Числовые ряды

Лекция. Числовые ряды

1. Определение числового ряда. Сходимость

2. Основные свойства числовых рядов

3. Ряды с положительными членами. Признаки сходимости

4. Знакочередующиеся ряды. Признак сходимости Лейбница

5. Знакопеременные ряды

Вопросы для самопроверки

Литература


Лекция. ЧИСЛОВЫЕ РЯДЫ

1. Определение числового ряда. Сходимость.

2. Основные свойства числовых рядов.

3. Ряды с положительными членами. Признаки сходимости.

4. Знакочередующиеся ряды. Признак сходимости Лейбница.

5. Знакопеременные ряды.

1. Определение числового ряда. Сходимость

В математических приложениях, а также при решении некоторых задач в экономике, статистике и других областях рассматриваются суммы с бесконечным числом слагаемых. Здесь мы дадим определение того, что понимается под такими суммами.

Пусть задана бесконечная числовая последовательность

, , …, , …

Определение 1.1 . Числовым рядом или просто рядом называется выражение (сумма) вида

. (1.1) называются членами ряда , – общим или n м членом ряда.

Чтобы задать ряд (1.1) достаточно задать функцию натурального аргумента

вычисления -го члена ряда по его номеру

Пример 1.1 . Пусть

. Ряд (1.2)

называется гармоническим рядом .

Пример 1.2 . Пусть

, Ряд (1.3)

называется обобщенным гармоническим рядом . В частном случае при

получается гармонический ряд.

Пример 1.3 . Пусть

= . Ряд (1.4)

называется рядом геометрической прогрессии .

Из членов ряда (1.1) образуем числовую последовательность частичных сумм где

– сумма первых членов ряда, которая называется n -й частичной суммой , т. е. , , ,

…………………………….

, (1.5)

…………………………….

Числовая последовательность

при неограниченном возрастании номера может:

1) иметь конечный предел;

2) не иметь конечного предела (предел не существует или равен бесконечности).

Определение 1.2 . Ряд (1.1) называется сходящимся, если последовательность его частичных сумм (1.5) имеет конечный предел, т. е.

В этом случае число

называется суммой ряда (1.1) и пишется .

Определение 1.3. Ряд (1.1) называется расходящимся, если последовательность его частичных сумм не имеет конечного предела .

Расходящемуся ряду не приписывают никакой суммы.

Таким образом, задача нахождения суммы сходящегося ряда (1.1) равносильна вычислению предела последовательности его частичных сумм.

Рассмотрим несколько примеров.

Пример 1.4. Доказать, что ряд

сходится, и найти его сумму.

Найдем n - ю частичную сумму данного ряда

.

Общий член

ряда представим в виде .

Отсюда имеем:

. Следовательно, данный ряд сходится и его сумма равна 1:

Пример 1.5 . Исследовать на сходимость ряд

(1.6)

Для этого ряда

. Следовательно, данный ряд расходится.

Замечание. При

ряд (1.6) представляет собой сумму бесконечного числа нулей и является, очевидно, сходящимся.

Пример 1.6. Исследовать на сходимость ряд

(1.7)

Для этого ряда

В этом случае предел последовательности частичных сумм

не существует, и ряд расходится.

Пример 1.7. Исследовать на сходимость ряд геометрической прогрессии (1.4):

Нетрудно показать, что n -я частичная сумма ряда геометрической прогрессии при

задается формулой .

Рассмотрим случаи:

Тогда и .

Следовательно, ряд сходится и его сумма равна

Контрольная работа для заочного отделения

Данко, П. Е. Высшая математика в упражнениях и задачах: в 2 ч. / П.Е. Данко, А. Г. Попов, Т. Я. Кожевникова. - 5-е изд., испр. - М.: Высшая школа.Ч.1.-1998.-304с.

Бермант А.Ф., Араманович И.Г. Краткий курс математического анализа. -12-е издание. – СПб.: Лань, 2005.- 736 с

Б.М. Владимирский, А.Б. Горстко, Я.М. Ерусалимский. Математика: общий курс. – СПб.: Изд-во «Лань», 2002. – 954 с.

Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. - 5-е изд., стереотип. - М.: Наука, 1978. - 632с.

Демидович Б.П. Краткий курс высшей матетматики: Учебное пособие для вузов - M.: OOO «Издательство Астрель»: OOO «Издательство АСТ», 2001. - 656с.

Пискунов Н.С. Дифференциальные и интегральные исчисления: Учеб. для втузов. В 2-ч т. Т.II: - М.: Интеграл–Пресс, 2004. -544 с.

Введение.

Выполнять контрольную работу следует строго по графику. Каждый студент выполняет контрольную работу под вариантом, номер которого совпадает с его порядковым номером в групповом журнале. Решение задач нужно предоставить в письменном виде на отдельных листах (формата А 4, в скрепленном виде). Сдавать работу можно как в печатном, так и в письменном виде. Выполняя к.р. , студент должен переписать условие соответствующей задачи, написать подробное решение, выделив ответ. Там, где это необходимо, дать краткие пояснения по ходу решения.

«ЧИСЛОВЫЕ и ФУНКЦИОНАЛЬНЫЕ РЯДЫ»

Числовые ряды. Достаточные признаки их сходимости

Пусть u 1 , u 2 , u 3 , … , u n , …, где u n = f (n ), –– бесконечная числовая последовательность. Выражение u 1 + u 2 + u 3 + … + u n + … называется бесконечным числовым рядом , а числа u 1 , u 2 , u 3 , … , u n , … –– членами ряда; u n = f (n ) называется общим членом . Ряд часто записывают в виде .

Сумму первых n членов числового ряда обозначают через S n и называют n частичной суммой ряда :

Ряд называется сходящимся , если его n -я частичная сумма S n при неограниченном возрастании n стремится к конечному пределу, т.е. если . Число S называют суммой ряда . Если же n -я частичная сумма ряда при не стремится к конечному пределу, то ряд называют расходящимся .

Ряд , составленный из членов любой убывающей геометрической прогрессии, является сходящимся и имеет сумму .

Ряд , называемый гармоническим , расходится.

Необходимый признак сходимости. Если ряд сходится, то , т.е. при предел общего члена сходящегося ряда равен нулю.

Таким образом, если , то ряд расходится.

Перечислим важнейшие признаки сходимости и расходимости рядов с положительными членами.


Первый признак сравнения. Пусть даны два ряда

причем каждый член ряда (1) не превосходит соответствующего члена ряда (2), т.е. . Тогда если сходится ряд (2), то сходится и ряд (1); если расходится ряд (1), то расходится и ряд (2).

Этот признак остается в силе, если неравенства выполняются не при всех n , а лишь начиная с некоторого номера n = N .

Второй признак сравнения. Если существует конечный отличный от нуля предел , то ряды и одновременно сходятся или расходятся.

Радикальный признак Коши. Если для ряда

существует , то этот ряд сходится при , расходится при .

Признак Даламбера. Если для ряда существует , то этот ряд сходится при , расходится при .

Интегральный признак Коши. Если f (x ) при –– непрерывная положительная и монотонно убывающая функция, то ряд , где сходится или расходится в зависимости от того, сходится или расходится интеграл .

Рассмотрим теперь ряды, члены которых имеют чередующиеся знаки, т.е. ряды вида , где .

Признак сходимости знакочередующегося ряда (признак Лейбница). Знакочередующийся ряд сходится, если абсолютные величины его членов монотонно убывают, а общий член стремится к нулю. То есть, если выполняются следующие два условия: 1) и 2) .

Возьмем n -ю частичную сумму сходящегося знакочередующегося ряда, для которого выполняется признак Лейбница:

Пусть –– n -й остаток ряда. Его можно записать как разность между суммой ряда S и n -й частичной суммой S n , т.е. . Нетрудно видеть, что

Величина оценивается с помощью неравенства .

Остановимся теперь на некоторых свойствах знакопеременных рядов (т.е. знакочередующихся рядов и рядов с произвольным чередованием знаков своих членов).

Знакопеременный ряд сходится, если сходится ряд .

В этом случае исходный ряд называется абсолютно сходящимся .

Сходящийся ряд называется условно сходящимся , если ряд расходится.

Пример 1. Исследовать сходимость ряда

Решение. Данный ряд составлен из членов бесконечно убывающей геометрической прогрессии и поэтому сходится. Найдем его сумму. Здесь , (знаменатель прогрессии). Следовательно,

Пример 2. Исследовать сходимость ряда .

Решение. Данный ряд получен из гармонического отбрасыванием первых десяти членов. Следовательно, он расходится.

Пример 3. Исследовать сходимость ряда . , –– ряд сходится.

Перед началом работы с этой темой советую посмотреть раздел с терминологией для числовых рядов. Особенно стоит обратить внимание на понятие общего члена ряда. Если у вас есть сомнения в правильности выбора признака сходимости, советую глянуть тему "Выбор признака сходимости числовых рядов" .

Необходимый признак сходимости числовых рядов имеет простую формулировку: общий член сходящегося ряда стремится к нулю. Можно записать этот признак и более формально:

Если ряд $\sum\limits_{n=1}^{\infty}u_n$ сходится, то $\lim_{n\to\infty}u_n=0$.

Часто в литературе вместо словосочетания "необходимый признак сходимости" пишут "необходимое условие сходимости". Однако перейдём к сути: что означает данный признак? А означает он следующее: если $\lim_{n\to\infty}u_n=0$, то ряд может сходиться. Если же $\lim_{n\to\infty}u_n\neq 0$ (или же предела попросту не существует), то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

Стоит обратить внимание, что равенство $\lim_{n\to\infty}u_n=0$ вовсе не означает сходимости ряда. Ряд может как сходиться, так и расходиться. А вот если $\lim_{n\to\infty}u_n\neq 0$, то ряд гарантированно расходится. Если эти нюансы требуют детальных пояснений, то прошу раскрыть примечание.

Что означает словосочетание "необходимое условие"? показать\скрыть

Поясним понятие необходимого условия на примере. Для покупки ручки студенту необходимо иметь 10 рублей. Это можно записать так: если студент покупает ручку, то у него есть 10 рублей. Наличие десяти рублей - это и есть необходимое условие покупки ручки.

Пусть это условие выполнено, т.е. десятка у студента есть. Значит ли это, что он купит ручку? Вовсе нет. Он может купить ручку, а может приберечь деньги на потом. Или купить что-либо иное. Или подарить их кому-то, - вариантов масса:) Иными словами, выполнение необходимого условия покупки ручки (т.е. наличие денег) вовсе не гарантирует покупку этой ручки.

Точно так же и необходимое условие сходимости числового ряда $\lim_{n\to\infty}u_n=0$ вовсе не гарантирует сходимость этого самого ряда. Простая аналогия: если есть деньги, студент может купить ручку, а может и не купить. Если $\lim_{n\to\infty}u_n=0$, ряд может как сходиться, так и расходиться.

Однако что произойдет, если необходимое условие покупки ручки не выполнено, т.е. денег нет? Тогда студент ручку точно не купит. То же самое и с рядами: если необходимое условие сходимости не выполнено, т.е. $\lim_{n\to\infty}u_n\neq 0$, то ряд точно будет расходиться.

Говоря кратко: если необходимое условие выполнено, то следствие может как произойти, так и не произойти. Однако если необходимое условие не выполнено, то следствие точно не произойдёт.

Для наглядности приведу пример двух рядов: $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ и $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$. Общий член первого ряда $u_n=\frac{1}{n}$ и общий член второго ряда $v_n=\frac{1}{n^2}$ стремятся к нулю, т.е.

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{1}{n}=0;\; \lim_{n\to\infty}v_n=\lim_{n\to\infty}\frac{1}{n^2}=0. $$

Однако гармонический ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n}$ расходится, а ряд $\sum\limits_{n=1}^{\infty}\frac{1}{n^2}$ сходится. Выполнение необходимого условия сходимости вовсе не гарантирует сходимости ряда.

Исходя из необходимого условия сходимости ряда можно сформулировать достаточный признак расходимости числового ряда:

Если $\lim_{n\to\infty}u_n\neq 0$, то ряд $\sum\limits_{n=1}^{\infty}u_n$ расходится.

Чаще всего в стандартных примерах необходимый признак сходимости проверяется, если общий член ряда представлен дробью, числитель и знаменатель которой есть некие многочлены. Например, $u_n=\frac{3n^2+2n-1}{5n^2+7}$ (см. пример №1). Или же могут присутствовать корни от многочленов (см. пример №2). Бывают примеры, которые несколько выбиваются из данной схемы, но для стандартных контрольных работ это редкость (см. примеры во второй части этой темы). Подчеркну главное: с помощью необходимого признака нельзя доказать сходимость ряда. Этот признак используют, когда нужно доказать, что ряд расходится.

Пример №1

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3n^2+2n-1}{5n^2+7}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3n^2+2n-1}{5n^2+7}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3n^2+2n-1}{5n^2+7}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\frac{3n^2}{n^2}+\frac{2n}{n^2}-\frac{1}{n^2}}{\frac{5n^2}{n^2}+\frac{7}{n^2}}= \lim_{n\to\infty}\frac{3+\frac{2}{n}-\frac{1}{n^2}}{5+\frac{7}{n^2}}=\frac{3+0-0}{5+0}=\frac{3}{5}. $$

"Предел отношения двух многочленов" . Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n=\frac{3}{5}\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Решение окончено, однако, полагаю, у читателя возникнет вполне резоннный вопрос: а как мы вообще увидели, что нужно проверить выполнение необходимого условия сходимости? Существует немало признаков сходимости числовых рядов, так почему же взяли именно этот? Данный вопрос совсем не праздный. Но так как ответ на него, возможно, будет интересен не всем читателям, то я скрыл его под примечание.

Почему мы начали применять именно необходимый признак сходимости? показать\скрыть

Если говорить нестрого, то вопрос сходимости этого ряда решается ещё до формального исследования. Я не буду касаться такой темы как порядок роста, просто приведу некие общие рассуждения. Давайте посмотрим на общий член ряда $u_n=\frac{3n^2+2n-1}{5n^2+7}$ повнимательнее. Сначала обратимся к числителю. Число (-1), расположенное в числителе, можно отбросить сразу: если $n\to\infty$, то данное число будет пренебрежимо малым по сравнению с остальными слагаемыми.

Посмотрим на степени $n^2$ и $n$, имеющиеся в числителе. Вопрос: какой элемент ($n^2$ или $n$) будет расти быстрее прочих?

Ответ здесь прост: наиболее быстро будет увеличивать свои значения именно $n^2$. Например, когда $n=100$, то $n^2=10\;000$. И этот разрыв между $n$ и $n^2$ будет всё больше и больше. Поэтому все слагаемые, кроме тех, что содержат $n^2$, мы мысленно отбросим. После такого "отбрасывания" в числителе останется $3n^2$. А после проведения подобной процедуры для знаменателя, там останется $5n^2$. И дробь $\frac{3n^2+2n-1}{5n^2+7}$ теперь станет такой: $\frac{3n^2}{5n^2}=\frac{3}{5}$. Т.е. на бесконечности общий член явно не будет стремиться к нулю. Осталось лишь показать это формально, что и было сделано выше.

Частенько в записи общего члена ряда используют такие элементы, как, например, $\sin\alpha$ или $\arctg\alpha$ и тому подобное. Нужно просто помнить, что значения подобных величин не могут выходить за некие числовые границы. Например, каким бы ни было значение $\alpha$, значение $\sin\alpha$ останется в пределах $-1≤\sin\alpha≤ 1$. Т.е., к примеру, мы можем записать, что $-1≤\sin(n!e^n)≤ 1$. А теперь представьте, что в записи общего члена ряда расположено выражение вроде $5n+\sin(n!e^n)$. Сыграет ли синус, который может "колебаться" лишь от -1 до 1, хоть какую-либо значимую роль? Ведь значения $n$ устремляются в бесконечность, а синус не сможет превысить даже единицу! Поэтому при предварительном рассмотрении выражения $5n+\sin(n!e^n)$ синус можно просто отбросить.

Или, для примера, возьмём арктангенс. Каким бы ни было значение аргумента $\alpha$, значения $\arctg\alpha$ будут удовлетворять неравенству $-\frac{\pi}{2}<\arctg\alpha<\frac{\pi}{2}$. Т.е., например, в выражении вроде $7n^3+\sqrt{9n+100}-6\arctg(5^n+587n^{258})$ можно сразу отбросить арктангенс. Да и $\sqrt{9n+100}$ тоже, оставив при этом лишь $7n^3$.

Чтобы определить, какие элементы можно "отбрасывать", а какие нет, нужен небольшой навык. Чаще всего вопрос сходимости ряда можно решить ещё до формального исследования. А формальное исследование в стандартных примерах служит лишь подтверждением интуитивно полученного результата.

Ответ : ряд расходится.

Пример №2

Исследовать ряд $\sum\limits_{n=1}^{\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ на сходимость.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}=\left|\frac{\infty}{\infty}\right|= \lim_{n\to\infty}\frac{\sqrt{\frac{4n^7}{n^7}+\frac{5n^3}{n^7}-\frac{4}{n^7}}}{\frac{9n^2}{n^{\frac{7}{3}}}-\frac{n}{n^{\frac{7}{3}}}+\frac{12}{n^{\frac{7}{3}}}}= \lim_{n\to\infty}\frac{\sqrt{4+\frac{5}{n^4}-\frac{4}{n^7}}}{\frac{9}{n^\frac{1}{3}}-\frac{1}{n^\frac{4}{3}}+\frac{12}{n^\frac{7}{3}}}=+\infty. $$

Если метод решения данного предела вызывает вопросы, то советую обратиться к теме "Пределы с иррациональностями. Третья часть" (пример №7). Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Немного поговорим с позиции интуитивных рассуждений. В принципе, здесь верно всё то же самое, что было сказано в примечании к решению примера №1. Если мысленно "отбросить" все "несущественные" слагаемые в числителе и знаменателе общего члена ряда, то дробь $\frac{\sqrt{4n^7+5n^3-4}}{9n^2-n+12}$ примет вид: $\frac{\sqrt{4n^7}}{9n^2}=\frac{n^2\sqrt{4n}}{9n^2}=\frac{\sqrt{4n}}{9}$. Т.е. ещё до формального исследования становится ясным, что при $n\to\infty$ общий член ряда к нулю стремиться не станет. К бесконечности - станет, к нулю - нет. Поэтому остаётся лишь показать это строго, что и было сделано выше.

Ответ : ряд расходится.

Пример №3

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\left(5^n\sin\frac{8}{3^n}\right)$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=5^n\sin\frac{8}{3^n}$. Найдём предел общего члена ряда:

$$ \lim_{n\to\infty}u_n=\lim_{n\to\infty}\left(5^n\sin\frac{8}{3^n}\right)=\lim_{n\to\infty}\frac{\sin\frac{8}{3^n}}{\frac{1}{5^n}}=\left|\frac{0}{0}\right|=\left|\begin{aligned}&\frac{8}{3^n}\to 0;\\&\sin\frac{8}{3^n}\sim\frac{8}{3^n}. \end{aligned}\right|=\lim_{n\to\infty}\frac{\frac{8}{3^n}}{\frac{1}{5^n}}=8\cdot\lim_{n\to\infty}\left(\frac{5}{3}\right)^n=+\infty. $$

Так как предел общего члена ряда не равен нулю, т.е. $\lim_{n\to\infty}u_n\neq 0$, то необходимый признак сходимости не выполнен. Следовательно, ряд расходится.

Пару слов насчёт тех преобразований, которые были осуществлены при вычислении предела. Выражение $5^n$ было помещено в числитель для того, чтобы выражения и в числителе, и в знаменателе стали бесконечно малыми. Т.е. при $n\to\infty$ имеем: $\sin\frac{8}{3^n}\to 0$ и $\frac{1}{5^n}\to 0$. А если мы имеем отношение бесконечно малых, то смело можем применять формулы, указанные в документе "Эквивалентные бесконечно малые функции" (см. таблицу в конце документа). Согласно одной из таких формул, если $x\to 0$, то $\sin x\sim x$. А у нас и есть как раз такой случай: так как $\frac{8}{3^n}\to 0$, то $\sin\frac{8}{3^n}\sim\frac{8}{3^n}$. Иными словами, мы просто-напросто заменяем выражение $\sin\frac{8}{3^n}$ выражением $\frac{8}{3^n}$.

Полагаю, может возникнуть вопрос, зачем же мы преобразовывали выражение $5^n\sin\frac{8}{3^n}$ к виду дроби, - ведь замену можно было сделать и без такого преобразования. Ответ тут таков: замену-то сделать можно, но вот правомерна ли она будет? Теорема про эквивалентные бесконечно малые функции даёт недвусмысленное указание, что подобные замены возможны лишь в выражениях вида $\frac{\alpha(x)}{\beta(x)}$ (при этом $\alpha(x)$ и $\beta(x)$ - бесконечно малые), расположенных под знаком предела. Вот мы и преобразовали наше выражение к виду дроби, подогнав его под требования теоремы.

Ответ : ряд расходится.

Пример №4

Исследовать сходимость ряда $\sum\limits_{n=1}^{\infty}\frac{3^n}{n^2}$.

Так как нижний предел суммирования равен 1, то общий член ряда записан под знаком суммы: $u_n=\frac{3^n}{n^2}$. Вообще-то, вопрос со сходимостью этого ряда легко решается с помощью признака Д"Аламбера . Однако можно применить и необходимый признак сходимости.

Посмотрим повнимательнее на общий член ряда. В числителе расположено выражение $3^n$, которое с возрастанием $n$ увеличивается гораздо быстрее, нежели расположенный в знаменателе $n^2$. Сравните сами: например, если $n=10$, то $3^n=59049$, а $n^2=100$. И этот разрыв стремительно увеличивается с ростом $n$.

Вполне логично предположить, что если $n\to\infty$, то $u_n$ не станет стремиться к нулю, т.е. необходимое условие сходимости выполнено не будет. Осталось лишь проверить эту столь правдоподобную гипотезу и вычислить $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}$. Однако перед вычислением этого предела найдём вспомогательный предел функции $y=\frac{3^x}{x^2}$ при $x\to +\infty$, т.е. вычислим $\lim_{x\to +\infty}\frac{3^x}{x^2}$. Зачем мы это делаем: дело в том, что в выражении $u_n=\frac{3^n}{n^2}$ параметр $n$ принимает лишь натуральные значения ($n=1,2,3,\ldots$), а аргумент $x$ функции $y=\frac{3^x}{x^2}$ принимает действительные значения. При нахождении $\lim_{x\to+\infty}\frac{3^x}{x^2}$ мы можем применить правило Лопиталя:

$$ \lim_{x\to +\infty}\frac{3^x}{x^2}=\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x^2\right)"}=\lim_{x\to +\infty}\frac{3^x\ln 3}{2x}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x}{x} =\left|\frac{\infty}{\infty}\right|=|\text{применяем правило Лопиталя}|=\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{\left(3^x\right)"}{\left(x\right)"}=\\ =\frac{\ln 3}{2}\cdot\lim_{x\to +\infty}\frac{3^x\ln 3}{1}=\frac{\ln^2 3}{2}\cdot\lim_{x\to +\infty}3^x=+\infty. $$

Так как $\lim_{x\to +\infty}\frac{3^x}{x^2}=+\infty$, то $\lim_{n\to\infty}u_n=\lim_{n\to\infty}\frac{3^n}{n^2}=+\infty$. Так как $\lim_{n\to\infty}u_n\neq 0$, то необходимое условие сходимости ряда не выполнено, т.е. заданный ряд расходится.

Ответ : ряд расходится.

Иные примеры рядов, сходимость которых проверяется с помощью необходимого признака сходимости, находятся во второй части этой темы.