Первообразная функции в точке. Первообразная функция и её свойства

Существует три основных правила нахождения первообразных функций. Они очень похожи на соответствующие правила дифференцирования.

Правило 1

Если F есть первообразная дл некоторой функции f, а G есть первообразная для некоторой функции g, то F + G будет являться первообразной для f + g.

По определению первообразной F’ = f. G’ = g. А так как эти условия выполняются, то по правилу вычисления производной для суммы функций будем иметь:

(F + G)’ = F’ + G’ = f + g.

Правило 2

Если F есть первообразная для некоторой функции f, а k - некоторая постоянная. Тогда k*F есть первообразная для функции k*f. Это правило следует из правила вычисления производной сложной функции.

Имеем: (k*F)’ = k*F’ = k*f.

Правило 3

Если F(x) есть некоторая первообразная для функции f(x), а k и b есть некоторые постоянные, причем k не равняется нулю, тогда (1/k)*F*(k*x+b) будет первообразной для функции f(k*x+b).

Данное правило следует из правила вычисления производной сложной функции:

((1/k)*F*(k*x+b))’ = (1/k)*F’(k*x+b)*k = f(k*x+b).

Рассмотрим несколько примеров применения этих правил:

Пример 1 . Найти общий вид первообразных для функции f(x) = x^3 +1/x^2. Для функции x^3 одной из первообразных будет функция (x^4)/4, а для функции 1/x^2 одной из первообразных будет являться функция -1/x. Используя первое правило, имеем:

F(x) = x^4/4 - 1/x +C.

Пример 2 . Найдем общий вид первообразных для функции f(x) = 5*cos(x). Для функции cos(x) одна из первообразных будет являться функция sin(x). Если теперь воспользоваться вторым правилом, то будем иметь:

F(x) = 5*sin(x).

Пример 3. Найти одну из первообразных для функции y = sin(3*x-2). Для функции sin(x) одной из первообразных будет являться функция -cos(x). Если теперь воспользоваться третьим правилом, то получим выражение для первообразной:

F(x) = (-1/3)*cos(3*x-2)

Пример 4 . Найти первообразную для функции f(x) = 1/(7-3*x)^5

Первообразной для функции 1/x^5 будет являться функция (-1/(4*x^4)). Теперь воспользовавшись третьим правилом, получим.

Одна из операций дифференцирования- нахождение производной (дифференциала) и применении к исследованию функций.

Не менее важной является обратная задача. Если известно поведение функции в окрестностях каждой точки ее определения, то как восстановить функцию в целом, т.е. во всей области ее определения. Эта задача составляет предмет изучения так называемого интегрального исчисления.

Интегрированием называется действие обратное дифференцированию. Или восстановление функции f(х) по данной производной f`(х). Латинское слово “integro” означает – восстановление.

Пример №1 .

Пусть (f(х))’ = 3х 2 . Найдем f(х).

Решение:

Опираясь на правило дифференцирования, нетрудно догадаться, что f(х)=х 3 , ибо

(х 3)’ = 3х 2 Однако, легко можно заметить, что f(х) находится неоднозначно. В качестве f(х) можно взять f(х)= х 3 +1 f(х)= х 3 +2 f(х)= х 3 -3 и др.

Т.к. производная каждой из них равно 3х 2 . (Производная постоянной равна 0). Все эти функции отличаются друг от друга постоянным слагаемым. Поэтому общее решение задачи можно записать в виде f(х)= х 3 +С, где С - любое постоянное действительное число.

Любую из найденных функций f(х) называют первообразной для функции F`(х)= 3х 2

Определение.

Функция F(х) называется первообразной для функции f(х) на заданном промежутке J, если для всех х из этого промежутка F`(х)= f(х). Так функция F(х)=х 3 первообразная для f(х)=3х 2 на (- ∞ ; ∞). Так как, для всех х ~R справедливо равенство: F`(х)=(х 3)`=3х 2

Как мы уже заметили, данная функция имеет бесконечное множество первообразных.

Пример №2.

Функция есть первообразная для всех на промежутке (0; +∞), т.к. для всех ч из этого промежутка, выполняется равенство.

Задача интегрирования состоит в том, чтобы для заданной функции найти все ее первообразные. При решении этой задачи важную роль играет следующее утверждение:

Признак постоянства функции. Если F"(х) = 0 на некотором промежутке I, то функция F - постоянная на этом промежутке.

Доказательство.

Зафиксируем некоторое x 0 из промежутка I. Тогда для любого числа х из такого промежутка в силу формулы Лагранжа можно указать такое число c, заключенное между х и x 0 , что

F(x) - F(x 0) = F"(c)(x-x 0).

По условию F’ (с) = 0, так как с ∈1, следовательно,

F(x) - F(x 0) = 0.

Итак, для всех х из промежутка I

т е. функция F сохраняет постоянное значение.

Все первообразные функции f можно записать с помощью одной формулы, которую называютобщим видом первообразных для функции f. Справедлива следующая теорема (основное свойство первообразных ):

Теорема. Любая первообразная для функции f на промежутке I может быть записана в виде

F(x) + C, (1) где F (х) - одна из первообразных для функции f (x) на промежутке I, а С - произвольная постоянная.

Поясним это утверждение, в котором кратко сформулированы два свойства первообразной:

  1. какое бы число ни поставить в выражение (1) вместо С, получим первообразную для f на промежутке I;
  2. какую бы первообразную Ф для f на промежутке I ни взять, можно подобрать такое число С, что для всех х из промежутка I будет выполнено равенство

Доказательство.

  1. По условию функция F - первообразная для f на промежутке I. Следовательно, F"(х)= f (х) для любого х∈1, поэтому (F(x) + C)" = F"(x) + C"=f(x)+0=f(x), т. е. F(x) + C - первообразная для функции f.
  2. Пусть Ф (х) - одна из первообразных для функции f на том же промежутке I, т. е. Ф"(x) = f (х) для всех x∈I.

Тогда (Ф(x) - F (x))" = Ф"(х)-F’ (х) = f(x)-f(x)=0.

Отсюда следует в. силу признака постоянства функции, что разность Ф(х) - F(х) есть функция, принимающая некоторое постоянное значение С на промежутке I.

Таким образом, для всех х из промежутка I справедливо равенство Ф(х) - F(x)=С, что и требовалось доказать. Основному свойству первообразной можно придать геометрический смысл: графики любых двух первообразных для функции f получаются друг из друга параллельным переносом вдоль оси Оу

Вопросы к конспектам

Функция F(x) является первообразной для функции f(x). Найдите F(1), если f(x)=9x2 - 6x + 1 и F(-1) = 2.

Найдите все первообразные для функции

Для функции (x) = cos2 * sin2x, найдите первообразную F(x), если F(0) = 0.

Для функции найдите первообразную, график которой проходит через точку

Мы убедились в том, что производная имеет многочисленные применения: производная - это скорость движения (или, обобщая, скорость протекания любого процесса); производная - это угловой коэффициент касательной к графику функции; с помощью производной можно исследовать функцию на монотонность и экстремумы; производная помогает решать задачи на оптимизацию.

Но в реальной жизни приходится решать и обратные задачи: например, наряду с задачей об отыскании скорости по известному закону движения встречается и задача о восстановлении закона движения по известной скорости. Рассмотрим одну из таких задач.

Пример 1. По прямой движется материальная точка, скорость ее движения в момент времени t задается формулой u = tg. Найти закон движения.

Решение. Пусть s = s(t) - искомый закон движения. Известно, что s"(t) = u"(t). Значит, для решения задачи нужно подобрать функцию s = s(t), производная которой равна tg. Нетрудно догадаться, что

Сразу заметим, что пример решен верно, но неполно. Мы получили, что На самом деле, задача имеет бесконечно много решений: любая функция вида произвольная константа, может служить законом движения, поскольку


Чтобы задача стала более определенной, нам надо было зафиксировать исходную ситуацию: указать координату движущейся точки в какой-либо момент времени, например, при t=0. Если, скажем, s(0) = s 0 , то из равенства получаем s(0) = 0+С, т.е.S 0 = С. Теперь закон движения определен однозначно:
В математике взаимно обратным операциям присваивают разные названия, придумывают специальные обозначения: например, возведение в квадрат (х 2) и извлечение квадратного корня синус(sinх) и арксинус (аrcsin х) и т.д. Процесс отыскания производной по заданной функции называют дифференцированием, а обратную операцию, т.е. процесс отыскания функции по заданной производной - интегрированием.
Сам термин «производная» можно обосновать «по-житейски»: функция у - f(х) «производит на свет» новую функцию у"= f"(x) Функция у = f(х) выступает как бы в качестве «родителя», но математики, естественно, не называют ее «родителем» или «производителем», они говорят, что это, по отношению к функции у"=f"(х), первичный образ, или, короче, первообразная.

Определение 1. Функцию у = F(х) называют первообразной для функции у = f(х) на заданном промежутке X, если для всех х из X выполняется равенство F"(х)=f(х).

На практике промежуток X обычно не указывают, но подразумевают (в качестве естественной области определения функции).

Приведем примеры:

1) Функция у = х 2 является первообразной для функции у = 2х, поскольку для всех х справедливо равенство (х 2)" =2х.
2) функция у - х 3 является первообразной для функции у-Зх 2 , поскольку для всех х справедливо равенство (х 3)" = Зх 2 .
3) Функция у-sinх является первообразной для функции у=соsх, поскольку для всех х справедливо равенство (sinх)" =соsх.
4) Функция являетя первообразной для функции на промежутке поскольку для всех х > 0 справедливо равенство
Вообще, зная формулы для отыскания производных, нетрудно составить таблицу формул для отыскания первообразных.


Надеемся, вы поняли, как составлена эта таблица: производная функции, которая записана во втором столбце, равна той функции, которая записана в соответствующей строке первого столбца (проверьте, не поленитесь, это очень полезно). Например, для функции у = х 5 первообразной, как вы установите, служит функция (см. четвертую строку таблицы).

Замечания: 1. Ниже мы докажем теорему о том, что если у = F(х) - первообразная для функции у = f(х), то у функции у = f(х)бесконечно много первообразных и все они имеют вид у = F(х) + С. Поэтому правильней было бы во втором столбце таблицы всюду добавить слагаемое С, где С - произвольное действительное число.
2. Ради краткости иногда вместо фразы «функция у = F(х) является первообразной для функции y = f(x)», говорят F(х) - первообразная для f(x)».

2. Правила отыскания первообразных

При отыскании первообразных, как и при отыскании производных, используются не только формулы (они указаны в таблице на с. 196), но и некоторые правила. Они непосредственно связаны с соответствующими правилами вычисления производных.

Мы знаем, что производная суммы равна сумме производных. Это правило порождает соответствующее правило отыскания первообразных.

Правило 1. Первообразная суммы равна сумме первообразных.

Обращаем ваше внимание на некоторую «легковесность» этой формулировки. На самом деле следовало бы сформулировать теорему: если функции у = f(х) и у=g{х) имеют на промежутке X первообразные, соответственно у-F(х) и у-G(х), то и сумма функций у = f(х)+g(х) имеет на промежутке X первообразную, причем этой первообразной является функция у = F(х)+G(х). Но обычно, формулируя правила (а не теоремы), оставляют только ключевые слова - так удобнее для применения правила на практике

Пример 2. Найти первообразную для функции у = 2х + соз х.

Решение. Первообразной для 2х служит х"; первообразной для созх служит sin х. Значит, первообразной для функции у=2х + соз х будет служить функция у = х 2 + sin х (и вообще любая функция вида У = х 1 + sinх + С).
Мы знаем, что постоянный множитель можно вынести за знак производной. Это правило порождает соответствующее правило отыскания первообразных.

Правило 2. Постоянный множитель можно вынести за знак первообразной.

Пример 3.

Ре ш е н и е. а) Первообразной для sin х служит -соз х; значит, для функции у = 5 sin х первообразной будет функция у = -5соз х.

б) Первообразной для соз x служит sin x; значит, для функции первообразной будет функция
в) Первообразной для х 3 служит первообразной для х служит первообразной для функции у = 1 служит функция у = х. Используя первое и второе правила отыскания первообразных, получим, что первообразной для функции у = 12х 3 + 8х-1 служит функция
Замечание. Как известно, производная произведения не равна произведению производных (правило дифференцирования произведения более сложное) и производная частного не равна частному от производных. Поэтому нет и правил для отыскания первообразной от произведения или первообразной от частного двух функций. Будьте внимательны!
Получим еще одно правило отыскания первообразных. Мы знаем, что производная функции у = f(кх+m) вычисляется по формуле

Это правило порождает соответствующее правило отыскания первообразных.
Правило 3. Если у = F(х) - первообразная для функции у = f(х), то первообразной для функции у=f(кх+m) служит функция

В самом деле,


Это и означает, что является первообразной для функции у = f(кх+m).
Смысл третьего правила заключается в следующем. Если вы знаете, что первообразной для функции у = f(х) является функция у = F(х),а.вам нужно найти первообразную функции у = f(кх+m), то действуйте так: берите ту же самую функцию F, но вместо аргумента х подставьте выражение кх+m; кроме того, не забудьте перед знаком функции записать «поправочный множитель»
Пример 4. Найти первообразные для заданных функций:

Решение , а) Первообразной для sin х служит -соз х; значит, для функции у = sin2х первообразной будет функция
б) Первообразной для соз х служит sin х; значит, для функции первообразной будет функция

в) Первообразной для х 7 служит значит, для функции у=(4-5х) 7 первообразной будет функция

3. Неопределенный интеграл

Выше мы уже отмечали, что задача отыскания первообразной для заданной функции у = f(х)имеет не одно решение. Обсудим этот вопрос более детально.

Доказательство. 1. Пусть у = F(х) - первообразная для функции у = f(х) на промежутке X. Это значит, что для всех х из X выполняется равенство x"(х) = f(х). Найдем производную любой функции вида у = F(х)+С:
(F(х) +С) = F"(х) +С = f(x) +0 = f(x).

Итак, (F(х)+С) = f(х). Это значит, что у = F(х) +С является первообразной для функции у = f(х).
Таким образом, мы доказали, что если у функции у = f(х) есть первообразная у=F(х), то у функции {f = f(x) бесконечно много первообразных, например, любая функция вида у = F(х)+С является первообразной.
2. Докажем теперь, что указанным видом функций исчерпывается все множество первообразных.

Пусть у=F 1 (х) и у=F(х) - две первообразные для функции У = f(x)на промежутке X. Это значит, что для всех х из промежутка X выполняются соотношения: F^ (х) = f(х); F"(х) = f(х).

Рaсмотрим функцию у = F 1 (х) -.F(х) и найдем ее производную: (F, (х) -F(х))" = F[(х)-F(х) = f(х) - f(х) = 0.
Известно, что если производная функции на промежутке X тождественно равна нулю, то функция постоянна на промежутке X (см. теорему 3 из § 35). Значит, F 1 (х)-F(х) =С, т.е. Fх) = F(х)+С.

Теорема доказана.

Пример 5. Задан закон изменения скорости от времени v = -5sin2t. Найти закон движения s = s(t), если известно, что в момент времени t=0 координата точки равнялась числу 1,5 (т.е. s(t) = 1,5).

Решение. Так как скорость - производная координаты как функции от времени, то нам прежде всего нужно найти первообразную от скорости, т.е. первообразную для функции v = -5sin2t. Одной из таких первообразных является функция , а множество всех первообразных имеет вид:

Чтобы найти конкретное значение постоянной С, воспользуемся начальными условиями, согласно которым, s(0) = 1,5. Подставив в формулу (1) значения t=0, S = 1,5, получим:

Подставив найденное значение С в формулу (1), получим интересующий нас закон движения:

Определение 2. Если функция у = f(х) имеет на промежутке X первообразную у = F(х), то множество всех первообразных, т.е. множество функций вида у = F(х) + С, называют неопределенным интегралом от функции у = f(x) и обозначают:

(читают: «неопределенный интеграл эф от икс дэ икс»).
В следующем параграфе мы выясним, в чем состоит скрытый смысл указанного обозначения.
Опираясь на имеющуюся в этом параграфе таблицу первообразных, составим таблицу основных неопределенных интегралов:

Опираясь на приведенные выше три правила отыскания первообразных, мы можем сформулировать соответствующие правила интегрирования.

Правило 1. Интеграл от суммы функций равен сумме интегралов этих функций:

Правило 2. Постоянный множитель можно вынести за знак интеграла:

Правило 3. Если

Пример 6. Найти неопределенные интегралы:

Решение , а) Воспользовавшись первым и вторым правилами интегрирования, получим:


Теперь воспользуемся 3-й и 4-й формулами интегрирования:

В итоге получаем:

б) Воспользовавшись третьим правилом интегрирования и формулой 8, получим:


в) Для непосредственного нахождения заданного интеграла у нас нет ни соответствующей формулы, ни соответствующего правила. В подобных случаях иногда помогают предварительно выполненные тождественные преобразования выражения, содержащегося под знаком интеграла.

Воспользуемся тригонометрической формулой понижения степени:

Тогда последовательно находим:

А.Г. Мордкович Алгебра 10 класс

Календарно-тематическое планирование по математике, видео по математике онлайн , Математика в школе

Первообра́зная. Красивое слово.) Для начала немного русского языка. Произносится это слово именно так, а не "первоОбразная" , как может показаться. Первообразная - базовое понятие всего интегрального исчисления. Любые интегралы – неопределённые, определённые (с ними вы познакомитесь уже в этом семестре), а также двойные, тройные, криволинейные, поверхностные (а это уже главные герои второго курса) – строятся на этом ключевом понятии. Имеет полный смысл освоить. Поехали.)

Прежде чем знакомиться с понятием первообразной, давайте в самых общих чертах вспомним самую обычную производную . Не углубляясь в занудную теорию пределов, приращений аргумента и прочего, можно сказать, что нахождение производной (или дифференцирование ) – это просто математическая операция над функцией . И всё. Берётся любая функция (допустим, f(x) = x 2 ) и по определённым правилам преобразовывается, превращаясь в новую функцию . И вот эта самая новая функция и называется производной .

В нашем случае, до дифференцирования была функция f(x) = x 2 , а после дифференцирования стала уже другая функция f’(x) = 2x .

Производная – потому, что наша новая функция f’(x) = 2x произошла от функции f(x) = x 2 . В результате операции дифференцирования. И причём именно от неё, а не от какой-то другой функции (x 3 , например).

Грубо говоря, f(x) = x 2 – это мама, а f’(x) = 2x – её любимая дочка.) Это понятно. Идём дальше.

Математики – народ неугомонный. На каждое своё действие стремятся найти противодействие. :) Есть сложение – есть и вычитание. Есть умножение – есть и деление. Возведение в степень – извлечение корня. Синус – арксинус. Точно также есть дифференцирование – значит, есть и… интегрирование .)

А теперь поставим такую интересную задачу. Есть у нас, допустим, такая простенькая функция f(x) = 1 . И нам надо ответить на такой вопрос:

Производная КАКОЙ функции даёт нам функцию f (x ) = 1?

Иными словами, видя дочку, с помощью анализа ДНК, вычислить, кто же её мамаша. :) Так от какой же исходной функции (назовём её F(x)) произошла наша производная функция f(x) = 1? Или, в математической форме, для какой функции F(x) выполняется равенство:

F’(x) = f(x) = 1?

Пример элементарный. Я старался.) Просто подбираем функцию F(x) так, чтобы равенство сработало. :) Ну как, подобрали? Да, конечно! F(x) = x. Потому, что:

F’(x) = x’ = 1 = f(x) .

Разумеется, найденную мамочку F(x) = x надо как-то назвать, да.) Знакомьтесь!

Первообразной для функции f (x ) называется такая функция F (x ), производная которой равна f (x ), т.е. для которой справедливо равенство F ’(x ) = f (x ).

Вот и всё. Больше никаких научных хитростей. В строгом определении добавляется ещё дополнительная фраза "на промежутке Х" . Но мы пока в эти тонкости углубляться не будем, ибо наша первоочередная задача – научиться находить эти самые первообразные.

В нашем случае как раз и получается, что функция F(x) = x является первообразной для функции f(x) = 1.

Почему? Потому что F’(x) = f(x) = 1 . Производная икса есть единица. Возражений нет.)

Термин "первообразная" по-обывательски означает "родоначальница", "родитель", "предок". Сразу же вспоминаем самого родного и близкого человека.) А сам поиск первообразной – это восстановление исходной функции по известной её производной . Иными словами, это действие, обратное дифференцированию . И всё! Сам же этот увлекательный процесс тоже называется вполне научно – интегрирование . Но об интегралах – позже. Терпение, друзья!)

Запоминаем:

Интегрирование - это математическая операция над функцией (как и дифференцирование).

Интегрирование - операция, обратная дифференцированию.

Первообразная - результат интегрирования.

А теперь усложним задачу. Найдём теперь первообразную для функции f(x) = x . То есть, найдём такую функцию F(x) , чтобы её производная равнялась бы иксу:

F’(x) = x

Кто дружит с производными, тому, возможно, на ум придёт что-то типа:

(x 2)’ = 2x.

Что ж, респект и уважуха тем, кто помнит таблицу производных!) Верно. Но есть одна проблемка. Наша исходная функция f(x) = x , а (x 2)’ = 2 x . Два икс. А у нас после дифференцирования должен получиться просто икс . Не катит. Но…

Мы с вами народ учёный. Аттестаты получили.) И со школы знаем, что обе части любого равенства можно умножать и делить на одно и то же число (кроме нуля, разумеется)! Так уж устроены. Вот и реализуем эту возможность себе во благо.)

Мы ведь хотим, чтобы справа остался чистый икс, верно? А двойка мешает… Вот и берём соотношение для производной (x 2)’ = 2x и делим обе его части на эту самую двойку:

Так, уже кое-чего проясняется. Идём дальше. Мы знаем, что любую константу можно вынести за знак производной. Вот так:

Все формулы в математике работают как слева направо, так и наоборот – справа налево. Это значит, что, с тем же успехом, любую константу можно и внести под знак производной:

В нашем случае спрячем двойку в знаменателе (или, что то же самое, коэффициент 1/2) под знак производной:

А теперь внимательно присмотримся к нашей записи. Что мы видим? Мы видим равенство, гласящее, что производная от чего-то (это что-то - в скобочках) равняется иксу.

Полученное равенство как раз и означает, что искомой первообразной для функции f(x) = x служит функция F(x) = x 2 /2 . Та, что стоит в скобочках под штрихом. Прямо по смыслу первообразной.) Что ж, проверим результат. Найдём производную:

Отлично! Получена исходная функция f(x) = x . От чего плясали, к тому и вернулись. Это значит, что наша первообразная найдена верно.)

А если f(x) = x 2 ? Чему равна её первообразная? Не вопрос! Мы с вами знаем (опять же, из правил дифференцирования), что:

3x 2 = (x 3)’

И, стало быть,

Уловили? Теперь мы, незаметно для себя, научились считать первообразные для любой степенной функции f(x)=x n . В уме.) Берём исходный показатель n , увеличиваем его на единичку, а в качестве компенсации делим всю конструкцию на n+1 :

Полученная формулка, между прочим, справедлива не только для натурального показателя степени n , но и для любого другого – отрицательного, дробного. Это позволяет легко находить первообразные от простеньких дробей и корней.

Например:


Естественно, n ≠ -1 , иначе в знаменателе формулы получается ноль, и формула теряет смысл.) Про этот особый случай n = -1 чуть позже.)

Что такое неопределённый интеграл? Таблица интегралов.

Скажем, чему равна производная для функции F(x) = x? Ну, единица, единица – слышу недовольные ответы… Всё верно. Единица. Но… Для функции G(x) = x+1 производная тоже будет равна единице :

Также производная будет равна единице и для функции x+1234 , и для функции x-10 , и для любой другой функции вида x+C , где С – любая константа. Ибо производная любой константы равна нулю, а от прибавления/вычитания нуля никому ни холодно ни жарко.)

Получается неоднозначность. Выходит, что для функции f(x) = 1 первообразной служит не только функция F(x) = x , но и функция F 1 (x) = x+1234 и функция F 2 (x) = x-10 и так далее!

Да. Именно так.) У всякой (непрерывной на промежутке ) функции существует не какая-то одна первообразная, а бесконечно много - целое семейство! Не одна мама или папа, а целая родословная, ага.)

Но! Всех наших родственников-первообразных объединяет одно важное свойство. На то они и родственники.) Свойство настолько важное, что в процессе разбора приёмов интегрирования мы про него ещё не раз вспомним. И будем вспоминать ещё долго.)

Вот оно, это свойство:

Любые две первообразные F 1 (x ) и F 2 (x ) от одной и той же функции f (x ) отличаются на константу:

F 1 (x ) - F 2 (x ) = С.

Кому интересно доказательство – штудируйте литературу или конспекты лекций.) Ладно, так уж и быть, докажу. Благо доказательство тут элементарное, в одно действие. Берём равенство

F 1 (x ) - F 2 (x ) = С

и дифференцируем обе его части. То есть, просто тупо ставим штрихи:

Вот и всё. Как говорится, ЧТД. :)

О чём говорит это свойство? А о том, что две различные первообразные от одной и той же функции f(x) не могут отличаться на какое-то выражение с иксом . Только строго на константу! Иными словами, если у нас есть график какой-то одной из первообразных (пусть это будет F(x)), то графики всех остальных наших первообразных строятся параллельным переносом графика F(x) вдоль оси игреков.

Посмотрим, как это выглядит на примере функции f(x) = x . Все её первообразные, как нам уже известно, имеют общий вид F(x) = x 2 /2+C . На картинке это выглядит как бесконечное множество парабол , получаемых из "основной" параболы y = x 2 /2 сдвигом вдоль оси OY вверх или вниз в зависимости от значения константы С .


Помните школьное построение графика функции y=f(x)+a сдвигом графика y=f(x) на "а" единиц вдоль оси игреков?) Вот и тут то же самое.)

Причём, обратите внимание: наши параболы нигде не пересекаются! Оно и естественно. Ведь две различные функции y 1 (x) и y 2 (x) неизбежно будут соответствовать двум различным значениям константы С 1 и С 2 .

Поэтому уравнение y 1 (x) = y 2 (x) никогда не имеет решений:

С 1 = С 2

x ∊ ∅ , так как С 1 ≠ С2

А теперь мы плавненько подходим ко второму краеугольному понятию интегрального исчисления. Как мы только что установили, у всякой функции f(x) существует бесконечное множество первообразных F(x) + C, отличающихся друг от друга на константу. Это самое бесконечное множество тоже имеет своё специальное название.) Что ж, прошу любить и жаловать!

Что такое неопределённый интеграл?

Множество всех первообразных для функции f (x ) называется неопределённым интегралом от функции f (x ).

Вот и всё определение.)

"Неопределённый" - потому, что множество всех первообразных для одной и той же функции бесконечно . Слишком много различных вариантов.)

"Интеграл" – с подробной расшифровкой этого зверского слова мы познакомимся в следующем большом разделе, посвящённом определённым интегралам . А пока, в грубой форме, будем считать интегралом нечто общее, единое, целое . А интегрированием – объединение, обобщение , в данном случае переход от частного (производной) к общему (первообразным). Вот, как-то так.

Обозначается неопределённый интеграл вот так:

Читается так же, как и пишется: интеграл эф от икс дэ икс . Или интеграл от эф от икс дэ икс. Ну, вы поняли.)

Теперь разберёмся с обозначениями.

- значок интеграла. Смысл тот же, что и штрих для производной.)

d - значок дифференциала. Не пугаемся! Зачем он там нужен – чуть ниже.

f(x) - подынтегральная функция (через "ы").

f(x)dx - подынтегральное выражение. Или, грубо говоря, "начинка" интеграла.

Согласно смыслу неопределённого интеграла,

Здесь F(x) – та самая первообразная для функции f(x) , которую мы так или иначе нашли сами. Как именно нашли - не суть. Например, мы установили, что F(x) = x 2 /2 для f(x)=x .

"С" - произвольная постоянная. Или, более научно, интегральная константа . Или константа интегрирования. Всё едино.)

А теперь вернёмся к нашим самым первым примерам на поиск первообразной. В терминах неопределённого интеграла можно теперь смело записать:

Что такое интегральная константа и зачем она нужна?

Вопрос очень интересный. И очень (ОЧЕНЬ!) важный. Интегральная константа из всего бесконечного множества первообразных выделяет ту линию, которая проходит через заданную точку.

В чём суть. Из исходного бесконечного множества первообразных (т.е. неопределённого интеграла ) надо выделить ту кривую, которая будет проходить через заданную точку. С какими-то конкретными координатами. Такое задание всегда и везде встречается при начальном знакомстве с интегралами. Как в школе, так и в ВУЗЕ.

Типичная задачка:

Среди множества всех первообразных функции f=x выделить ту, которая проходит через точку (2;2).

Начинаем думать головой… Множество всех первоообразных - это значит, сначала надо проинтегрировать нашу исходную функцию. То есть, икс (х). Этим мы занимались чуть выше и получили такой ответ:

А теперь разбираемся, что именно мы получили. Мы получили не одну функцию, а целое семейство функций. Каких именно? Вида y=x 2 /2+C . Зависящее от значения константы С. И вот это значение константы нам и предстоит теперь "отловить".) Ну что, займёмся ловлей?)

Удочка наша - семейство кривых (парабол) y=x 2 /2+C.

Константы - это рыбины. Много-много. Но на каждую найдётся свой крючок и приманка.)

А что же служит приманкой? Правильно! Наша точка (-2;2).

Вот и подставляем координаты нашей точки в общий вид первообразных! Получим:

y(2) = 2

Отсюда уже легко ищется C = 0 .

Что сиё означает? Это значит, что из всего бесконечного множества парабол вида y=x 2 /2+C только парабола с константой С=0 нам подходит! А именно: y=x 2 /2. И только она. Только эта парабола будет проходить через нужную нам точку (-2; 2). А в се остальные параболы из нашего семейства проходить через эту точку уже не будут. Через какие-то другие точки плоскости - да, а вот через точку (2; 2) - уже нет. Уловили?

Для наглядности вот вам две картинки - всё семейство парабол (т.е. неопределённый интеграл) и какая-то конкретная парабола , соответствующая конкретному значению константы и проходящая через конкретную точку:

Видите, насколько важно учитывать константу С при интегрировании! Так что не пренебрегаем этой буковкой "С" и не забываем приписывать к окончательному ответу.

А теперь разберёмся, зачем же внутри интегралов везде тусуется символ dx . Забывают про него студенты частенько… А это, между прочим, тоже ошибка! И довольно грубая. Всё дело в том, что интегрирование – операция, обратная дифференцированию. А что именно является результатом дифференцирования ? Производная? Верно, но не совсем. Дифференциал!

В нашем случае, для функции f(x) дифференциал её первообразной F(x) , будет:

Кому непонятна данная цепочка – срочно повторить определение и смысл дифференциала и то, как именно он раскрывается! Иначе в интегралах будете тормозить нещадно….

Напомню, в самой грубой обывательской форме, что дифференциал любой функции f(x) - это просто произведение f’(x)dx . И всё! Взять производную и помножить её на дифференциал аргумента (т.е. dx). То есть, любой дифференциал, по сути, сводится к вычислению обычной производной .

Поэтому, строго говоря, интеграл "берётся" не от функции f(x) , как принято считать, а от дифференциала f(x)dx! Но, в упрощённом варианте, принято говорить, что "интеграл берётся от функции" . Или: "Интегрируется функция f (x) ". Это одно и то же. И мы будем говорить точно так же. Но про значок dx при этом забывать не будем! :)

И сейчас я подскажу, как его не забыть при записи. Представьте себе сначала, что вы вычисляете обычную производную по переменной икс. Как вы обычно её пишете?

Вот так: f’(x), y’(x), у’ x . Или более солидно, через отношение дифференциалов: dy/dx. Все эти записи нам показывают, что производная берётся именно по иксу. А не по "игреку", "тэ" или какой-то там другой переменной.)

Так же и в интегралах. Запись ∫ f(x)dx нам тоже как бы показывает, что интегрирование проводится именно по переменной икс . Конечно, это всё очень упрощённо и грубо, но зато понятно, я надеюсь. И шансы забыть приписать вездесущее dx резко снижаются.)

Итак, что такое же неопределённый интеграл – разобрались. Прекрасно.) Теперь хорошо бы научиться эти самые неопределённые интегралы вычислять . Или, попросту говоря, "брать". :) И вот тут студентов поджидает две новости – хорошая и не очень. Пока начнём с хорошей.)

Новость хорошая. Для интегралов, так же как и для производных, существует своя табличка. И все интегралы, которые нам будут встречаться по пути, даже самые страшные и навороченные, мы по определённым правилам будем так или иначе сводить к этим самым табличным.)

Итак, вот она, таблица интегралов!

Вот такая вот красивая табличка интегралов от самых-самых популярных функций. Рекомендую обратить отдельное внимание на группу формул 1-2 (константа и степенная функция). Это – самые употребительные формулы в интегралах!

Третья группа формул (тригонометрия), как можно догадаться, получена простым обращением соответствующих формул для производных.

Например:

C четвёртой группой формул (показательная функция) – всё аналогично.

А вот четыре последние группы формул (5-8) для нас новые. Откуда же они взялись и за какие такие заслуги именно эти экзотические функции, вдруг, вошли в таблицу основных интегралов? Чем же эти группы функций так выделяются на фоне остальных функций?

Так уж сложилось исторически в процессе развития методов интегрирования . Когда мы будем тренироваться брать самые-самые разнообразные интегралы, то вы поймёте, что интегралы от перечисленных в таблице функций встречаются очень и очень часто. Настолько часто, что математики отнесли их к табличным.) Через них выражаются очень многие другие интегралы, от более сложных конструкций.

Ради интереса можно взять какую-нибудь из этих жутких формул и продифференцировать. :) Например, самую зверскую 7-ю формулу.

Всё нормально. Не обманули математики. :)

Таблицу интегралов, как и таблицу производных, желательно знать наизусть. Во всяком случае, первые четыре группы формул. Это не так трудно, как кажется на первый взгляд. Заучивать наизусть последние четыре группы (с дробями и корнями) пока не стоит. Всё равно поначалу будете путаться, где логарифм писать, где арктангенс, где арксинус, где 1/а, где 1/2а … Выход тут один - решать побольше примеров. Тогда таблица сама собой постепенно и запомнится, а сомнения грызть перестанут.)

Особо любознательные лица, присмотревшись к таблице, могут спросить: а где же в таблице интегралы от других элементарных "школьных" функций – тангенса, логарифма, "арков"? Скажем, почему в таблице ЕСТЬ интеграл от синуса, но при этом НЕТУ, скажем, интеграла от тангенса tg x ? Или нету интеграла от логарифма ln x ? От арксинуса arcsin x ? Чем они хуже? Но зато полно каких-то "левых" функций - с корнями, дробями, квадратами…

Ответ. Ничем не хуже.) Просто вышеназванные интегралы (от тангенса, логарифма, арксинуса и т.д.) не являются табличными . И встречаются на практике значительно реже, нежели те, что представлены в таблице. Поэтому знать наизусть , чему они равны, вовсе не обязательно. Достаточно лишь знать, как они вычисляются .)

Что, кому-то всё-таки невтерпёж? Так уж и быть, специально для вас!

Ну как, будете заучивать? :) Не будете? И не надо.) Но не волнуйтесь, все подобные интегралы мы обязательно найдём. В соответствующих уроках. :)

Что ж, теперь переходим к свойствам неопределённого интеграла. Да-да, ничего не поделать! Вводится новое понятие – тут же и какие-то его свойства рассматриваются.

Свойства неопределённого интеграла.

Теперь не очень хорошая новость.

В отличие от дифференцирования, общих стандартных правил интегрирования , справедливых на все случаи жизни , в математике нету. Это фантастика!

Например, вы все прекрасно знаете (надеюсь!), что любое произведение любых двух функций f(x)·g(x) дифференцируется вот так:

(f(x)·g(x))’ = f’(x)·g(x) + f(x)·g’(x) .

Любое частное дифференцируется вот так:

А любая сложная функция, какой бы накрученной она ни была, дифференцируется вот так:

И какие бы функции ни скрывались под буквами f и g, общие правила всё равно сработают и производная, так или иначе, будет найдена.

А вот с интегралами такой номер уже не пройдёт: для произведения, частного (дроби), а также сложной функции общих формул интегрирования не существует! Нету никаких стандартных правил! Вернее, они есть. Это я зря математику обидел.) Но, во-первых, их гораздо меньше, чем общих правил для дифференцирования. А во-вторых, большинство методов интегрирования, о которых мы будем разговаривать в следующих уроках, очень и очень специфические. И справедливы лишь для определённого, очень ограниченного класса функций. Скажем, только для дробно-рациональных функций . Или каких-то ещё.

А какие-то интегралы, хоть и существуют в природе, но вообще никак не выражаются через элементарные "школьные" функции! Да-да, и таких интегралов полно! :)

Именно поэтому интегрирование – гораздо более трудоёмкое и кропотливое занятие, чем дифференцирование. Но в этом есть и своя изюминка. Занятие это творческое и очень увлекательное.) И, если вы хорошо усвоите таблицу интегралов и освоите хотя бы два базовых приёма, о которых мы поговорим далее ( и ), то интегрирование вам очень понравится. :)

А теперь познакомимся, собственно, со свойствами неопределённого интеграла. Их всего ничего. Вот они.


Первые два свойства полностью аналогичны таким же свойствам для производных и называются свойствами линейности неопределённого интеграла . Тут всё просто и логично: интеграл от суммы/разности равен сумме/разности интегралов, а постоянный множитель можно вынести за знак интеграла.

А вот следующие три свойства для нас принципиально новые. Разберём их поподробнее. Звучат по-русски они следующим образом.

Третье свойство

Производная от интеграла равна подынтегральной функции

Всё просто, как в сказке. Если проинтегрировать функцию, а потом обратно найти производную от результата, то… получится исходная подынтегральная функция. :) Этим свойством всегда можно (и нужно) пользоваться для проверки окончательного результата интегрирования. Вычислили интеграл - продифференцируйте ответ! Получили подынтегральную функцию – ОК. Не получили – значит, где-то накосячили. Ищите ошибку.)

Конечно же, в ответе могут получаться настолько зверские и громоздкие функции, что и обратно дифференцировать их неохота, да. Но лучше, по возможности, стараться себя проверять. Хотя бы в тех примерах, где это несложно.)

Четвёртое свойство

Дифференциал от интеграла равен подынтегральному выражению .

Тут ничего особенного. Суть та же самая, только dx на конце появляется. Согласно предыдущему свойству и правилам раскрытия дифференциала.

Пятое свойство

Интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной .

Тоже очень простое свойство. Им мы тоже будем регулярно пользоваться в процессе решения интегралов. Особенно – в и .

Вот такие вот полезные свойства. Занудствовать с их строгими доказательствами я здесь не собираюсь. Желающим предлагаю это сделать самостоятельно. Прямо по смыслу производной и дифференциала. Докажу лишь последнее, пятое свойство, ибо оно менее очевидно.

Итак, у нас есть утверждение:

Вытаскиваем "начинку" нашего интеграла и раскрываем, согласно определению дифференциала:

На всякий случай, напоминаю, что, согласно нашим обозначениям производной и первообразной, F ’(x ) = f (x ) .

Вставляем теперь наш результат обратно внутрь интеграла:

Получено в точности определение неопределённого интеграла (да простит меня русский язык)! :)

Вот и всё.)

Что ж. На этом наше начальное знакомство с таинственным миром интегралов считаю состоявшимся. На сегодня предлагаю закруглиться. Мы уже достаточно вооружены, чтобы идти в разведку. Если не пулемётом, то хотя бы водяным пистолетом базовыми свойствами и таблицей. :) В следующем уроке нас уже ждут простейшие безобидные примеры интегралов на прямое применение таблицы и выписанных свойств.

До встречи!

Функция F(x ) называется первообразной для функции f(x ) на заданном промежутке, если для всех x из этого промежутка выполняется равенство

F"(x ) = f (x ) .

Например, функция F(x) = х 2 f(x ) = 2х , так как

F"(x) = (х 2 )" = 2x = f(x).

Основное свойство первообразной

Если F(x) — первообразная для функции f(x) на заданном промежутке, то функция f(x) имеет бесконечно много первообразных, и все эти первообразные можно записать в виде F(x) + С , где С — произвольная постоянная.

Например.

Функция F(x) = х 2 + 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 + 1 )" = 2 x = f(x) ;

функция F(x) = х 2 - 1 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 1)" = 2x = f(x) ;

функция F(x) = х 2 - 3 является первообразной для функции

f(x ) = 2х , так как F"(x) = (х 2 - 3)" = 2 x = f(x) ;

любая функция F(x) = х 2 + С , где С — произвольная постоянная, и только такая функция, является первообразной для функции f(x ) = 2х .

Правила вычисления первообразных

  1. Если F(x) — первообразная для f(x) , а G(x) — первообразная для g(x) , то F(x) + G(x) — первообразная для f(x) + g(x) . Иными словами, первообразная суммы равна сумме первообразных .
  2. Если F(x) — первообразная для f(x) , и k — постоянная, то k ·F(x) — первообразная для k ·f(x) . Иными словами, постоянный множитель можно выносить за знак производной .
  3. Если F(x) — первообразная для f(x) , и k , b — постоянные, причём k ≠ 0 , то 1 / k · F( k x + b ) — первообразная для f (k x + b ) .

Неопределённый интеграл

Неопределённым интегралом от функции f(x) называется выражение F(x) + С , то есть совокупность всех первообразных данной функции f(x) . Обозначается неопределённый интеграл так:

f(x) dx = F(x) + С ,

f(x) — называют подынтегральной функцией ;

f(x) dx — называют подынтегральным выражением ;

x — называют переменной интегрирования ;

F(x) — одна из первообразных функции f(x) ;

С — произвольная постоянная.

Например, 2 x dx = х 2 + С , cos x dx = sin х + С и так далее.

Слово "интеграл" происходит от латинского слова integer , что означает "восстановленный". Считая неопределённый интеграл от 2 x , мы как бы восстанавливаем функцию х 2 , производная которой равна 2 x . Восстановление функции по её производной, или, что то же, отыскание неопределённого интеграла по данной подынтегральной функции, называется интегрированием этой функции. Интегрирование представляет собой операцию, обратную дифференцированию.Для того чтобы проверить, правильно ли выполнено интегрирование, достаточно продифференцировать результат и получить при этом подынтегральную функцию.

Основные свойства неопределённого интеграла

  1. Производная неопределённого интеграла равна подынтегральной функции:
  2. ( f(x) dx )" = f(x) .

  3. Постоянный множитель подынтегрального выражения можно выносить за знак интеграла:
  4. k · f(x) dx = k · f(x) dx .

  5. Интеграл от суммы (разности) функций равен сумме (разности) интегралов от этих функций:
  6. ( f(x) ± g(x ) ) dx = f(x) dx ± g(x ) dx .

  7. Если k , b — постоянные, причём k ≠ 0 , то
  8. f (k x + b ) dx = 1 / k · F( k x + b ) + С .

Таблица первообразных и неопределённых интегралов


f(x)
F(x) + C
f(x) dx = F(x) + С
I.
$$0$$
$$C$$
$$\int 0dx=C$$
II.
$$k$$
$$kx+C$$
$$\int kdx=kx+C$$
III.
$$x^n~(n\neq-1)$$
$$\frac{x^{n+1}}{n+1}+C$$
$$\int x^ndx=\frac{x^{n+1}}{n+1}+C$$
IV.
$$\frac{1}{x}$$
$$\ln |x|+C$$
$$\int\frac{dx}{x}=\ln |x|+C$$
V.
$$\sin x$$
$$-\cos x+C$$
$$\int\sin x~dx=-\cos x+C$$
VI.
$$\cos x$$
$$\sin x+C$$
$$\int\cos x~dx=\sin x+C$$
VII.
$$\frac{1}{\cos^2x}$$
$$\textrm{tg} ~x+C$$
$$\int\frac{dx}{\cos^2x}=\textrm{tg} ~x+C$$
VIII.
$$\frac{1}{\sin^2x}$$
$$-\textrm{ctg} ~x+C$$
$$\int\frac{dx}{\sin^2x}=-\textrm{ctg} ~x+C$$
IX.
$$e^x$$
$$e^x+C$$
$$\int e^xdx=e^x+C$$
X.
$$a^x$$
$$\frac{a^x}{\ln a}+C$$
$$\int a^xdx=\frac{a^x}{\ln a}+C$$
XI.
$$\frac{1}{\sqrt{1-x^2}}$$
$$\arcsin x +C$$
$$\int\frac{dx}{\sqrt{1-x^2}}=\arcsin x +C$$
XII.
$$\frac{1}{\sqrt{a^2-x^2}}$$
$$\arcsin \frac{x}{a}+C$$
$$\int\frac{dx}{\sqrt{a^2-x^2}}=\arcsin \frac{x}{a}+C$$
XIII.
$$\frac{1}{1+x^2}$$
$$\textrm{arctg} ~x+C$$
$$\int \frac{dx}{1+x^2}=\textrm{arctg} ~x+C$$
XIV.
$$\frac{1}{a^2+x^2}$$
$$\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
$$\int \frac{dx}{a^2+x^2}=\frac{1}{a}\textrm{arctg} ~\frac{x}{a}+C$$
XV.
$$\frac{1}{\sqrt{a^2+x^2}}$$
$$\ln|x+\sqrt{a^2+x^2}|+C$$
$$\int\frac{dx}{\sqrt{a^2+x^2}}=\ln|x+\sqrt{a^2+x^2}|+C$$
XVI.
$$\frac{1}{x^2-a^2}~(a\neq0)$$
$$\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
$$\int\frac{dx}{x^2-a^2}=\frac{1}{2a}\ln \begin{vmatrix}\frac{x-a}{x+a}\end{vmatrix}+C$$
XVII.
$$\textrm{tg} ~x$$
$$-\ln |\cos x|+C$$
$$\int \textrm{tg} ~x ~dx=-\ln |\cos x|+C$$
XVIII.
$$\textrm{ctg} ~x$$
$$\ln |\sin x|+C$$
$$\int \textrm{ctg} ~x ~dx=\ln |\sin x|+C$$
XIX.
$$ \frac{1}{\sin x} $$
$$\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
$$\int \frac{dx}{\sin x}=\ln \begin{vmatrix}\textrm{tg} ~\frac{x}{2}\end{vmatrix}+C $$
XX.
$$ \frac{1}{\cos x} $$
$$\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
$$\int \frac{dx}{\cos x}=\ln \begin{vmatrix}\textrm{tg}\left (\frac{x}{2}+\frac{\pi }{4} \right) \end{vmatrix}+C $$
Первообразные и неопределённые интегралы, приведённые в этой таблице, принято называть табличными первообразными и табличными интегралами .

Определённый интеграл

Пусть на промежутке [a ; b ] задана непрерывная функция y = f(x) , тогда определённым интегралом от a до b функции f(x) называется приращение первообразной F(x) этой функции, то есть

$$\int_{a}^{b}f(x)dx=F(x)|{_a^b} = ~~F(a)-F(b).$$

Числа a и b называются соответственно нижним и верхним пределами интегрирования.

Основные правила вычисления определённого интеграла

1. \(\int_{a}^{a}f(x)dx=0\);

2. \(\int_{a}^{b}f(x)dx=- \int_{b}^{a}f(x)dx\);

3. \(\int_{a}^{b}kf(x)dx=k\int_{a}^{b}f(x)dx,\) где k — постоянная;

4. \(\int_{a}^{b}(f(x) ± g(x))dx=\int_{a}^{b}f(x) dx±\int_{a}^{b}g(x) dx \);

5. \(\int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx\);

6. \(\int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx\), где f(x) — четная функция;

7. \(\int_{-a}^{a}f(x)dx=0\), где f(x) — нечетная функция.

Замечание . Во всех случаях предполагается, что подынтегральные функции интегрируемые на числовых промежутках, границами которых являются пределы интегрирования.

Геометрический и физический смысл определённого интеграла

Геометрический смысл
определённого интеграла


Физический смысл
определённого интеграла



Площадь S криволинейной трапеции (фигура, ограниченная графиком непрерывной положительной на промежутке [a ; b ] функции f(x) , осью Ox и прямыми x=a , x=b ) вычисляется по формуле

$$S=\int_{a}^{b}f(x)dx.$$

Путь s , который преодолела материальная точка, двигаясь прямолинейно со скоростью, изменяющейся по закону v(t) , за промежуток времени a ; b ] , то площадь фигуры, ограниченной графиками этих функций и прямыми x = a , x = b , вычисляется по формуле

$$S=\int_{a}^{b}(f(x)-g(x))dx.$$


Например. Вычислим площадь фигуры, ограниченной линиями

y = x 2 и y = 2 - x .


Изобразим схематически графики данных функций и выделим другим цветом фигуру, площадь которой необходимо найти. Для нахождения пределов интегрирования решим уравнение:

x 2 = 2 - x ; x 2 + x - 2 = 0 ; x 1 = -2, x 2 = 1 .

$$S=\int_{-2}^{1}((2-x)-x^2)dx=$$

$$=\int_{-2}^{1}(2-x-x^2)dx=\left (2x-\frac{x^2}{2}-\frac{x^3}{2} \right)\bigm|{_{-2}^{~1}}=4\frac{1}{2}. $$

Объём тела вращения


Если тело получено в результате вращения около оси Ox криволинейной трапеции, ограниченной графиком непрерывной и неотрицательной на промежутке [a ; b ] функции y = f(x) и прямыми x = a и x = b , то его называют телом вращения .

Объём тела вращения вычисляется по формуле

$$V=\pi\int_{a}^{b}f^2(x)dx.$$

Если тело вращения получено в результате вращения фигуры, ограниченной сверху и снизу графиками функций y = f(x) и y = g(x) , соответственно, то

$$V=\pi\int_{a}^{b}(f^2(x)-g^2(x))dx.$$


Например. Вычислим объём конуса с радиусом r и высотой h .

Расположим конус в прямоугольной системе координат так, чтобы его ось совпадала с осью Ox , а центр основания располагался в начале координат. Вращение образующей AB определяет конус. Так как уравнение AB

$$\frac{x}{h}+\frac{y}{r}=1,$$

$$y=r-\frac{rx}{h}$$

и для объёма конуса имеем

$$V=\pi\int_{0}^{h}(r-\frac{rx}{h})^2dx=\pi r^2\int_{0}^{h}(1-\frac{x}{h})^2dx=-\pi r^2h\cdot \frac{(1-\frac{x}{h})^3}{3}|{_0^h}=-\pi r^2h\left (0-\frac{1}{3} \right)=\frac{\pi r^2h}{3}.$$