Что такое абсорбция в химии. Процесс абсорбции

В технике и химической технологии чаще всего встречается абсорбция (поглощение, растворение) газов жидкостями. Но известны и процессы абсорбции газов и жидкостей кристаллическими и аморфными телами (например, абсорбция водорода металлами, абсорбция низкомолекулярных жидкостей и газов цеолитами, абсорбция нефтепродуктов резинотехническими изделиями и т.п.).

Часто в процессе абсорбции происходит не только увеличение массы абсорбирующего материала, но и существенное увеличение его объема (набухание), а также изменение его физических характеристик – вплоть до агрегатного состояния.

На практике абсорбция чаще всего применяется для разделения смесей, состоящих из веществ, имеющих различную способность к поглощению подходящими абсорбентами. При этом целевыми продуктами могут быть как абсорбировавшиеся, так и не абсорбировавшиеся компоненты смесей.

Обычно в случае физической абсорбции абсорбировавшиеся вещества могут быть вновь извлечены из абсорбента посредством его нагревания, разбавления неабсорбирущей жидкостью или иными подходящими способами. Регенерация химически абсорбированных веществ также иногда возможна. Она может быть основана на химическом или термическом разложении продуктов химической абсорбции с высвобождением всех или некоторых из абсорбированных веществ. Но во многих случаях регенерация химически абсорбированных веществ и химических абсорбентов бывает невозможной или технологически/экономически нецелесообразной.

Явления абсорбции широко распространены не только в промышленности, но и в природе (пример - набухание семян), а также в быту. При этом они могут приносить как пользу, так и вред (например, физическая абсорбция атмосферной влаги приводит к набуханию и последующему расслоению деревянных изделий, химическая абсорбция кислорода резиной - к потере ею эластичности и растрескиванию).

Следует отличать абсорбцию (поглощение в объёме) от адсорбции (поглощения в поверхностном слое). Из-за схожести написания и произношения, а также близости обозначаемых понятий эти термины часто путают.

Виды абсорбции

Различают физическую абсорбцию и хемосорбцию.

При физической абсорбции процесс поглощения не сопровождается химической реакцией.

При хемосорбции абсорбируемый компонент вступает в химическую реакцию с веществом абсорбента.

Абсорбция газов

Всякое плотное тело сгущает довольно значительно прилегающие непосредственно к его поверхности частицы окружающего его газообразного вещества. Если такое тело пористо, как, например, древесный уголь или губчатая платина , то это уплотнение газов имеет место и по всей внутренней поверхности его пор, а тем самым, следовательно, и в гораздо более высокой степени. Вот наглядный пример этого: если взять кусок свежепрокалённого древесного угля, бросить его в бутылку, содержащую углекислый или другой газ, и закрыв её сейчас же пальцем, опустить отверстием вниз в ртутную ванну, то мы вскоре увидим, что поднимается и входит в бутылку; это прямо доказывает, что уголь поглотил углекислоту или иначе наступило уплотнение, абсорбция газа.

При всяком уплотнении выделяется тепло; поэтому, если уголь растереть в порошок, что, например, практикуется при фабрикации пороха , и оставить лежать в куче, то от происходящего здесь поглощения воздуха масса так нагревается, что может произойти самовоспламенение. На этом именно согревании, зависящем от абсорбции, основано устройство платиновой горелки Дёберейнера . Находящийся там кусок губчатой платины уплотняет так сильно кислород воздуха и направленную на него струю водорода , что сам постепенно начинает накаливаться и наконец воспламеняет водород. Вещества, которые абсорбируют - поглощают из воздуха водяной пар , сгущают его тоже в себе, образуя воду, и от этого становятся влажными, как, например, нечистая поваренная соль , поташ , хлористый кальций и т. п. Такие тела зовутся гигроскопическими .

Абсорбция газов пористыми телами была впервые замечена и изучена почти одновременно Фонтаном и Шееле в 1777 году , а затем подвергалось исследованию многими физиками, а особенно Соссюра в 1813 году . Последний, как на самых жадных поглотителей, указывает на буковый уголь и пемзу (морская пенка). Один объём такого угля при атмосферном давлении в 724 мил. поглотил 90 объёмов аммиака , 85 - хлористого водорода, 25 - углекислоты, 9,42 - кислорода; пемза при таком же сравнении оказала немного менее поглотительной способности, но во всяком случае это тоже один из лучших абсорбентов.

Чем легче газ сгущается в жидкость, тем сильнее он поглощается. При малом наружном давлении и при нагревании - уменьшается количество поглощаемого газа. Чем мельче поры поглотителя, то есть чем он плотнее, тем большею, в общем, он обладает поглотительной способностью; слишком однако же мелкие поры, как например графита, не благоприятствуют абсорбции. Органический уголь поглощает не только газы, но и мелкие твёрдые и жидкие тела, а потому и употребляется для обесцвечивания сахара, очистки алкоголя и т. д. Вследствие абсорбции всякое плотное тело окружено слоем уплотнённых паров и газов. Эта причина, по Вайделю, может служить для объяснения открытого Мозером в 1842 году любопытного явления так называемых потовых картин, то есть получаемых при дыхании на стекло. А именно, если приложить клише или какой-нибудь рельефный рисунок к полированной стеклянной плоскости, затем, отняв её, подышать на это место, то на стекле получается довольно точный снимок рисунка. Это происходит от того, что при лежании на стекле клише газы близ поверхности стекла распределились неравномерно, в зависимости от нанесённого на клише рельефного рисунка, а потому и водяные пары, при дыхании на это место, распределяются тоже в таком порядке, а охладившись и осев, и воспроизводят данный рисунок. Но если нагреть предварительно стекло или клише, и рассеять таким образом уплотнённый близ них слой газов, то уже таких потовых рисунков получить нельзя.

По закону Дальтона из смеси газов каждый газ растворяется в жидкости пропорционально своему парциальному давлению , вне зависимости от присутствия остальных газов. Степень растворения газов в жидкости определяется коэффициентом, показывающим, сколько объёмов газа поглощается в одном объёме жидкости при температуре газа 0° и давлении в 760 мм. Коэффициенты абсорбции для газов и воды вычисляются по формуле α = А + В t + C t², где α - искомый коэффициент, t - температура газа, А , В и С - постоянные коэффициенты, определяемые для каждого отдельного газа. По исследованиям Бунзена коэффициенты важнейших газов имеют такие

Кроме твёрдых тел поглощать могут и жидкости, особенно если их смешать вместе в каком-нибудь сосуде. 1 объём воды может при 15 °C и 744 мил. давления растворить в себе, абсорбировать 1/50 объёма атмосферного воздуха, 1 объём углекислоты, 43 объёма сернистого газа и 727 объёмов аммиака. Объём газа, который при 0 °C и 760 мил. барометрического давления поглощается единицею объёма жидкости, называется коэффициентом поглощения газа для этой жидкости. Коэффициент этот для различных газов и различных жидкостей - различен. Чем выше наружное давление и ниже температура, тем больше растворяется в жидкости газа, тем больше коэффициент поглощения. Твёрдые и жидкие тела абсорбируют в данное время различные количества газов, а потому и можно вычислить количества поглощаемого газа для каждой отдельной жидкости. Изучение абсорбции газов жидкостями начато было Анри () и затем двинуто дальше Соссюром () и В. Бунзеном («Gasometrische Methoden», Брауншвейг, , 2 изд., ). - Причина абсорбции состоит во взаимном притяжении молекул тел абсорбирующего и абсорбируемого.

См. также

Напишите отзыв о статье "Абсорбция"

Ссылки

Абсорбция на примере на сайте "Горной энциклопедии".

Примечания

Отрывок, характеризующий Абсорбция

Пьер не имел той практической цепкости, которая бы дала ему возможность непосредственно взяться за дело, и потому он не любил его и только старался притвориться перед управляющим, что он занят делом. Управляющий же старался притвориться перед графом, что он считает эти занятия весьма полезными для хозяина и для себя стеснительными.
В большом городе нашлись знакомые; незнакомые поспешили познакомиться и радушно приветствовали вновь приехавшего богача, самого большого владельца губернии. Искушения по отношению главной слабости Пьера, той, в которой он признался во время приема в ложу, тоже были так сильны, что Пьер не мог воздержаться от них. Опять целые дни, недели, месяцы жизни Пьера проходили так же озабоченно и занято между вечерами, обедами, завтраками, балами, не давая ему времени опомниться, как и в Петербурге. Вместо новой жизни, которую надеялся повести Пьер, он жил всё тою же прежней жизнью, только в другой обстановке.
Из трех назначений масонства Пьер сознавал, что он не исполнял того, которое предписывало каждому масону быть образцом нравственной жизни, и из семи добродетелей совершенно не имел в себе двух: добронравия и любви к смерти. Он утешал себя тем, что за то он исполнял другое назначение, – исправление рода человеческого и имел другие добродетели, любовь к ближнему и в особенности щедрость.
Весной 1807 года Пьер решился ехать назад в Петербург. По дороге назад, он намеревался объехать все свои именья и лично удостовериться в том, что сделано из того, что им предписано и в каком положении находится теперь тот народ, который вверен ему Богом, и который он стремился облагодетельствовать.
Главноуправляющий, считавший все затеи молодого графа почти безумством, невыгодой для себя, для него, для крестьян – сделал уступки. Продолжая дело освобождения представлять невозможным, он распорядился постройкой во всех имениях больших зданий школ, больниц и приютов; для приезда барина везде приготовил встречи, не пышно торжественные, которые, он знал, не понравятся Пьеру, но именно такие религиозно благодарственные, с образами и хлебом солью, именно такие, которые, как он понимал барина, должны были подействовать на графа и обмануть его.
Южная весна, покойное, быстрое путешествие в венской коляске и уединение дороги радостно действовали на Пьера. Именья, в которых он не бывал еще, были – одно живописнее другого; народ везде представлялся благоденствующим и трогательно благодарным за сделанные ему благодеяния. Везде были встречи, которые, хотя и приводили в смущение Пьера, но в глубине души его вызывали радостное чувство. В одном месте мужики подносили ему хлеб соль и образ Петра и Павла, и просили позволения в честь его ангела Петра и Павла, в знак любви и благодарности за сделанные им благодеяния, воздвигнуть на свой счет новый придел в церкви. В другом месте его встретили женщины с грудными детьми, благодаря его за избавление от тяжелых работ. В третьем именьи его встречал священник с крестом, окруженный детьми, которых он по милостям графа обучал грамоте и религии. Во всех имениях Пьер видел своими глазами по одному плану воздвигавшиеся и воздвигнутые уже каменные здания больниц, школ, богаделен, которые должны были быть, в скором времени, открыты. Везде Пьер видел отчеты управляющих о барщинских работах, уменьшенных против прежнего, и слышал за то трогательные благодарения депутаций крестьян в синих кафтанах.
Пьер только не знал того, что там, где ему подносили хлеб соль и строили придел Петра и Павла, было торговое село и ярмарка в Петров день, что придел уже строился давно богачами мужиками села, теми, которые явились к нему, а что девять десятых мужиков этого села были в величайшем разорении. Он не знал, что вследствие того, что перестали по его приказу посылать ребятниц женщин с грудными детьми на барщину, эти самые ребятницы тем труднейшую работу несли на своей половине. Он не знал, что священник, встретивший его с крестом, отягощал мужиков своими поборами, и что собранные к нему ученики со слезами были отдаваемы ему, и за большие деньги были откупаемы родителями. Он не знал, что каменные, по плану, здания воздвигались своими рабочими и увеличили барщину крестьян, уменьшенную только на бумаге. Он не знал, что там, где управляющий указывал ему по книге на уменьшение по его воле оброка на одну треть, была наполовину прибавлена барщинная повинность. И потому Пьер был восхищен своим путешествием по именьям, и вполне возвратился к тому филантропическому настроению, в котором он выехал из Петербурга, и писал восторженные письма своему наставнику брату, как он называл великого мастера.
«Как легко, как мало усилия нужно, чтобы сделать так много добра, думал Пьер, и как мало мы об этом заботимся!»
Он счастлив был выказываемой ему благодарностью, но стыдился, принимая ее. Эта благодарность напоминала ему, на сколько он еще больше бы был в состоянии сделать для этих простых, добрых людей.
Главноуправляющий, весьма глупый и хитрый человек, совершенно понимая умного и наивного графа, и играя им, как игрушкой, увидав действие, произведенное на Пьера приготовленными приемами, решительнее обратился к нему с доводами о невозможности и, главное, ненужности освобождения крестьян, которые и без того были совершенно счастливы.
Пьер втайне своей души соглашался с управляющим в том, что трудно было представить себе людей, более счастливых, и что Бог знает, что ожидало их на воле; но Пьер, хотя и неохотно, настаивал на том, что он считал справедливым. Управляющий обещал употребить все силы для исполнения воли графа, ясно понимая, что граф никогда не будет в состоянии поверить его не только в том, употреблены ли все меры для продажи лесов и имений, для выкупа из Совета, но и никогда вероятно не спросит и не узнает о том, как построенные здания стоят пустыми и крестьяне продолжают давать работой и деньгами всё то, что они дают у других, т. е. всё, что они могут давать.

В самом счастливом состоянии духа возвращаясь из своего южного путешествия, Пьер исполнил свое давнишнее намерение заехать к своему другу Болконскому, которого он не видал два года.
Богучарово лежало в некрасивой, плоской местности, покрытой полями и срубленными и несрубленными еловыми и березовыми лесами. Барский двор находился на конце прямой, по большой дороге расположенной деревни, за вновь вырытым, полно налитым прудом, с необросшими еще травой берегами, в середине молодого леса, между которым стояло несколько больших сосен.
Барский двор состоял из гумна, надворных построек, конюшень, бани, флигеля и большого каменного дома с полукруглым фронтоном, который еще строился. Вокруг дома был рассажен молодой сад. Ограды и ворота были прочные и новые; под навесом стояли две пожарные трубы и бочка, выкрашенная зеленой краской; дороги были прямые, мосты были крепкие с перилами. На всем лежал отпечаток аккуратности и хозяйственности. Встретившиеся дворовые, на вопрос, где живет князь, указали на небольшой, новый флигелек, стоящий у самого края пруда. Старый дядька князя Андрея, Антон, высадил Пьера из коляски, сказал, что князь дома, и проводил его в чистую, маленькую прихожую.
Пьера поразила скромность маленького, хотя и чистенького домика после тех блестящих условий, в которых последний раз он видел своего друга в Петербурге. Он поспешно вошел в пахнущую еще сосной, не отштукатуренную, маленькую залу и хотел итти дальше, но Антон на цыпочках пробежал вперед и постучался в дверь.
– Ну, что там? – послышался резкий, неприятный голос.
– Гость, – отвечал Антон.
– Проси подождать, – и послышался отодвинутый стул. Пьер быстрыми шагами подошел к двери и столкнулся лицом к лицу с выходившим к нему, нахмуренным и постаревшим, князем Андреем. Пьер обнял его и, подняв очки, целовал его в щеки и близко смотрел на него.
– Вот не ждал, очень рад, – сказал князь Андрей. Пьер ничего не говорил; он удивленно, не спуская глаз, смотрел на своего друга. Его поразила происшедшая перемена в князе Андрее. Слова были ласковы, улыбка была на губах и лице князя Андрея, но взгляд был потухший, мертвый, которому, несмотря на видимое желание, князь Андрей не мог придать радостного и веселого блеска. Не то, что похудел, побледнел, возмужал его друг; но взгляд этот и морщинка на лбу, выражавшие долгое сосредоточение на чем то одном, поражали и отчуждали Пьера, пока он не привык к ним.
При свидании после долгой разлуки, как это всегда бывает, разговор долго не мог остановиться; они спрашивали и отвечали коротко о таких вещах, о которых они сами знали, что надо было говорить долго. Наконец разговор стал понемногу останавливаться на прежде отрывочно сказанном, на вопросах о прошедшей жизни, о планах на будущее, о путешествии Пьера, о его занятиях, о войне и т. д. Та сосредоточенность и убитость, которую заметил Пьер во взгляде князя Андрея, теперь выражалась еще сильнее в улыбке, с которою он слушал Пьера, в особенности тогда, когда Пьер говорил с одушевлением радости о прошедшем или будущем. Как будто князь Андрей и желал бы, но не мог принимать участия в том, что он говорил. Пьер начинал чувствовать, что перед князем Андреем восторженность, мечты, надежды на счастие и на добро не приличны. Ему совестно было высказывать все свои новые, масонские мысли, в особенности подновленные и возбужденные в нем его последним путешествием. Он сдерживал себя, боялся быть наивным; вместе с тем ему неудержимо хотелось поскорей показать своему другу, что он был теперь совсем другой, лучший Пьер, чем тот, который был в Петербурге.

Тема 3.3. Абсорбция 12ч., в т.ч. лаб. раб. и практ. занят 6ч.

Студент должен:

знать:

Физические основы и теорию процесса абсорбции (равновесие между фазами, принципы составления материального теплового баланса, уравнение рабочей линии);

- порядок расчета насадочного и барботажного абсорбера;

- сущность и методы проведения десорбции;

уметь:

- составлять материальный и тепловой баланс;

- определять расход поглотителя;

- строить равновесную и рабочую линию процесса;

- определять основные габаритные размеры абсорберов, пользуясь справочниками.

Назначение абсорбции. Абсорбция при разделении гомогенных газовых смесей и очистки газов. Выбор абсорбента. Физическая абсорбция и абсорбция, сопровождаемая химическим взаимодействием. Десорбция.

Равновесие между фазами при абсорбции. Влияние температуры и давления на растворимость газов в жидкостях. Материальный баланс процесса и уравнения рабочей линии при абсорбции и десорбции. Расход абсорбента. Тепловой баланс абсорбции. Отвод тепла при абсорбции.

Абсорбцией называют процесс избирательного поглощения компонентов из газовых или парогазовых смесей жидкими поглотителями – абсорбентами.

Принцип абсорбции основывается на различной растворимости компонентов газовых и парогазовых смесей в жидкостях при одних и тех же условиях. Поэтому выбор абсорбентов осуществляют в зависимости от растворимости в них поглощаемых компонентов, которая определяется:

· физическими и химическими свойствами газовой и жидкой фаз;

· температурой и давлением осуществления процесса;

При выборе абсорбента необходимо учитывать такие его свойства, как селективность (избирательность) по отношению к поглощаемому компоненту, токсичность, пожароопасность, стоимость, доступность и др.

Различают физическую абсорбцию и химическую абсорбцию (хемосорбцию). При физической абсорбции поглощаемый компонент образует с абсорбентом только физические связи. Процесс этот в большинстве случаев является обратимым. На этом свойстве основано выделение поглощенного компонента из раствора – десорбция. Если поглощаемый компонент вступает в реакцию с абсорбентом и образует химическое соединение, то процесс называют хемосорбцией.

Процесс абсорбции обычно является экзотермическим, т. е. сопровождается выделением теплоты.

Абсорбция широко используется в промышленности для разделения углеводородных газов на нефтеперерабатывающих установках, получения соляной и серной кислот, аммиачной воды, очистки газовых выбросов от вредных примесей, выделения ценных компонентов из газов крекинга или пиролиза метана, из газов коксовых печей и т. д.

Равновесие в процессах абсорбции определяется правилом фаз Гиббса (В.4), представляющим обобщение условий гетерогенного равновесия:

C = К - Ф + 2.

Поскольку процесс абсорбции осуществляется в двухфазной (газ – жидкость) и трехкомпонентной (один распределяемый и два распределяющих компонента) системе, число степеней свободы – три.

Таким образом, равновесие в системе газ (пар) – жидкость может характеризоваться тремя параметрами, например температурой, давлением и составом одной из фаз.

Равновесие в системе газ – жидкость определяется законом растворимости Генри, согласно которому при данной температуре мольная доля газа в растворе (растворимость) пропорциональна парциальному давлению газа над раствором:

где р – парциальное давление газа над раствором; х – мольная концентрация газа в растворе; Е – коэффициент пропорциональности (коэффициент Генри).

Закон Генри распространяется в первую очередь на слаборастворимые газы, а также на растворы с низкими концентрациями хорошо растворимых газов при отсутствии химической реакции.

Коэффициент Е имеет размерность давления, совпадающую с размерностью р, и зависит от природы растворяющегося вещества и температуры. Установлено, что с увеличением температуры растворимость газа в жидкости уменьшается. Когда в равновесии с жидкостью находится смесь газов, закону Генри может следовать каждый из компонентов смеси в отдельности.

Поскольку тепловой эффект, сопровождающий процесс абсорбции, отрицательно сказывается на положении линии равновесия, он должен обязательно учитываться при расчетах. Количество теплоты, выделяющейся при абсорбции, может быть определено по зависимости

где q д - дифференциальная теплота растворения в пределах изменения концентрации х 1 – х 2 ; L – количество абсорбента.

Если абсорбция ведется без отвода теплоты, то можно допустить, что вся выделяющаяся теплота идет на нагревание жидкости, и температура последней повышается на величину

где с – теплоемкость раствора.

Для понижения температуры исходную газовую смесь и абсорбент охлаждают, отводя теплоту, выделяющуюся в процессе абсорбции, с помощью встроенных (внутренних) или наружных теплообменников.

Парциальное давление растворяемого газа в газовой фазе, соответствующее равновесию, может быть определено по закону Дальтона , согласно которому парциальное давление компонента в газовой смеси равно общему давлению, умноженному на мольную долю этого компонента в смеси, т. е.

где Р – общее давление газовой смеси; у – мольная концентрация распределяемого в смеси газа.

Сопоставляя уравнения (10.2) и (10.1), найдем

где А равн = Е/Р – константа фазового равновесия, применимая для областей действия законов Генри и Дальтона.

Пусть Р аб – давление паров чистого абсорбента в условиях абсорбции; р аб – парциальное давление паров абсорбента в растворе; Р – общее давление; х – мольная доля абсорбируемого газа в растворе; у – мольная доля распределяемого газа в газовой фазе; у аб – мольная доля абсорбента в газовой фазе.

Согласно закону Рауля парциальное давление компонента в растворе равно давлению пара чистого компонента, умноженному на его мольную долю в растворе:

По закону Дальтона (10.2) парциальное давление абсорбента в газовой фазе равно

При равновесии

Анализ факторов, влияющих на равновесие в системах газ (пар) – жидкость, позволил установить, что к параметрам, улучшающим условия абсорбции, относятся повышенное давление и пониженная температура, а к факторам, способствующим десорбции, - пониженное давление, повышенная температура и введение в абсорбент добавок, уменьшающих растворимость газов в жидкостях.

Материальный баланс процесса абсорбции выражается дифференциальным уравнением

где G – поток газовой смеси (инертного газа), кмоль/с; L – поток абсорбента, кмоль/с; Y н и Y к – начальное и конечное содержание распределяемого вещества в газовой фазе, кмоль/кмоль инертного газа; Х к и Х н – начальное и конечное содержание распределяемого вещества в абсорбенте, кмоль/кмоль абсорбента; М – количество распределяемого вещества, перенесенного из фазы G в фазу L в единицу времени, кмоль/с.

Из уравнения материального баланса (10.9) можно определить необходимый общий расход абсорбента

Процесс абсорбции характеризуется также степенью извлечения (поглощения), представляющей отношение количества фактически поглощенного компонента к количеству, поглощаемому при полном его извлечении,

Кинетика процесса абсорбции характеризуется тремя основными стадиями, которые соответствуют схеме, представленной на рис. 9.4.

Первая стадия – перенос молекул абсорбируемого компонента из ядра потока газа (пара) к поверхности раздела фаз (поверхности жидкости).

Вторая стадия – диффундирование молекул абсорбируемого компонента через поверхностный слой жидкости (граница раздела фаз).

Третья стадия – переход молекул абсорбируемого вещества от поверхности раздела фаз в основную массу жидкости.

Кинетические закономерности абсорбции соответствуют общему уравнению массопередачи для двухфазных систем:

Экспериментально установлено, что вторая стадия процесса абсорбции идет с большей скоростью и не влияет на общую скорость процесса, ограниченную скоростью наиболее медленной стадии (первой или третьей).

Движущая сила процесса абсорбции для I и III стадий в уравнениях (10.5а) и (10.6а) может быть выражена через другие параметры:

В уравнениях (10.5б) и (10.6б) р – рабочее парциальное давление распределяемого газа в газовой смеси; р равн – равновесное давление газа над абсорбентом, соответствующее рабочей концентрации в жидкости; С – рабочая объемная мольная концентрация распределяемого газа в жидкости; С равн – равновесная объемная мольная концентрация распределяемого газа в жидкости, соответствующая рабочему парциальному давлению его в газовой смеси.

При таком выражении движущей силы процесса абсорбции уравнение равновесной зависимости принимает вид

где Ψ – коэффициент пропорциональности, кмоль/(м 3 *Па).

Коэффициенты массопередачи выражаются для уравнений (10.5а) и (10.6а) в виде

для уравнений (10.5б) и (10.6б)

В уравнениях (10.7) и (10.8) β у, β р – коэффициенты массоотдачи от потока газа к поверхности контакта фаз; β х, β С - коэффициенты массоотдачи от поверхности контакта фаз к потоку жидкости.

Коэффициенты массоотдачи по газу и жидкости β у и β х могут быть определены из критериальных уравнений, имеющих вид:

для газовой фазы Nu диф у = f *(Re, Pr диф у);

для жидкой фазы Nu диф х = f *(Re, Pr диф х).

Величина коэффициента Ψ оказывает существенное влияние на кинетику процесса абсорбции. Если Ψ имеет высокие значения (высокая растворимость компонента – диффузионное сопротивление сосредоточено в газовой фазе), то 1/(β c *Ψ) < 1/β р или К Р ≈ β р. Если Ψ мало (извлекаемый компонент трудно растворим – диффузионное сопротивление сосредоточено в жидкой фазе), то Ψ/β р << 1/β с и можно считать К с ≈ β с

Так же, как для массоо6менных процессов при L/G = const, рабочие линии процесса абсорбции являются прямыми и описываются в случае противотока уравнением (9.4), а прямотока – уравнением (9.5).

Средняя движущая сила в уравнениях (10.5а) и (10.6а) определяется в случае прямолинейной равновесной зависимости через относительные мольные концентрации компонентов по зависимостям (9.6) и (9.7).

Эти же зависимости можно использовать и при выражении движущей силы процесса абсорбции через парциальные давления распределяемого компонента в газе или объемные мольные концентрации этого же компонента в жидкости в уравнениях (10.5б) и (10.6б)

Здесь Δр max , Δр min – большее и меньшее значения движущей силы в начале и конце процесса абсорбции, выраженные через разность парциальных давлений поглощаемого компонента; ΔС max , ΔС min – большее и меньшее значения движущей силы в начале и конце процесса абсорбции, выраженные через объемные мольные концентрации поглощаемого компонента в жидкости.

В случае Δp max /Δp min ≤ 2, ΔC max /ΔC min ≤ 2 при сохранении линейности равновесной зависимости средняя движущая сила процесса абсорбции может равняться среднеарифметическому этих значений.

При проведении процесса абсорбции, сопровождаемой химической реакцией (хемосорбция), протекающей в жидкой фазе, часть распределяемого компонента переходит в химически связанное состояние. В результате этого концентрация растворенного (физически связанного) распределяемого компонента в жидкости уменьшается, что приводит к увеличению движущей силы процесса по сравнению с чисто физической абсорбцией.

Скорость хемосорбции зависит как от скорости массопередачи, так и от скорости химической реакции. В этом случае различают диффузионную и кинетическую области протекания хемосорбции. В диффузионной области скорость процесса определяется скоростью массопередачи, в кинетической – скоростью химической реакции. В тех случаях, когда скорости массопередачи и реакции соизмеримы, процессы хемосорбции протекают в смешанной, или диффузионно-кинетической, области.

При расчете хемосорбции коэффициент массоотдачи в жидкой фазе, учитывающий протекающую в ней химическую реакцию β′ х, может быть выражен через коэффициент массоотдачи при физической абсорбции β х с учетом фактора ускорения массообмена Ф м, показывающего, во сколько раз увеличится скорость абсорбции за счет протекания химической реакции:

β′ х = β х * Ф м

Фактор Фм определяют по графическим зависимостям.

absorption) - (в физиологии) поглощение, всасывание жидкости или других веществ тканями человеческого тела. Переваренная пища всасывается пищеварительным трактом и поступает затем в кровь и лимфу. Больше всего питательных веществ всасывается в тонкой кишке - в составляющих ее тощей и подвздошной кишке, однако алкоголь может легко всасываться и из желудка. Тонкая кишка выстлана изнутри мельчайшими пальцевидными выпячиваниями (см. Ворсинка), которые значительно увеличивают площадь ее поверхности, в результате чего всасывание продуктов пищеварения значительно ускоряется. См. также Ассимиляция, Пищеварение.

Абсорбция

Словообразование. Происходит от лат. absorptio - поглощение.

Специфика. Восприимчивость индивида к особым состояниям сознания (гипнозу, наркотикам, медитации). В обычных ситуациях проявляется в повышении уровня фантазирования. Показано, что абсорбция связана с другими личностными характеристиками (положительно - с разноплановостью мотивов, социальной приспособляемостью, образностью мышления, коммуникативностью, тревожностью, а также со слабостью и динамичностью нервной системы; отрицательно - с самоконтролем, социальным статусом в малой группе, уровнем притязаний, а также с подвижностью нервной системы).

Литература. Гримак Л.П. Моделирование состояний человека в гипнозе. М.: Наука, 1978;

Pekala R.J., Wenger C.F., Levine P. Individual differences in phenomenological experience: states of consciousness as a function of absorption // J. Pers. and Soc. Psychol. 1985, 48, N 1, p. 125-132

АБСОРБЦИЯ

1. При исследовании сенсорных процессов, поглощение рецептором химического, электромагнитного или другого физического стимула. Например, см. спектральная абсорбция. 2. Занятость, поглощенность какой-то деятельностью. Оттенок значения может быть положительным, когда внимание субъекта сосредоточено на выполнении какой-то задачи, или отрицательным, когда поглощение внимания рассматривается как уход от действительности.

Абсорбцией называют процесс поглощения газа жидким поглотителем, в котором газ растворим в той или иной степени. Обратный процесс – выделение растворенного газа из раствора – носит название десорбции.

В абсорбционных процессах (абсорбция, десорбция) участвуют две фазы – жидкая и газовая и происходит переход вещества из газовой фазы в жидкую (при абсорбции) или, наоборот, из жидкой фазы в газовую (при десорбции). Таким образом, абсорбционные процессы являются одним из видов процессов масопередачи.

На практике абсорбции подвергают большей частью не отдельные газы, а газовые смеси, составные части которых (одна или несколько) могут поглощаться данным поглотителем в заметных количествах. Эти составные части называют абсорбируемыми компонентами или просто компонентами, а не поглощаемые составные части – инертным газом.

Жидкая фаза состоит из поглотителя и абсорбируемого компонента. Во многих случаях поглотитель представляет собой раствор активного компонента, вступающего в химическую реакцию с абсорбируемым компонентом; при этом вещество, в котором растворен активный компонент, будем называть растворителем.

Инертный газ и поглотитель являются носителями компонента соответственно в газовой и жидкой фазах. При физической абсорбции (см. ниже) инертный газ и поглотитель не расходуются и не участвуют в процессах перехода компонента из одной фазы в другую. При хемосорбции (см. ниже) поглотитель может химически взаимодействовать с компонентом.

Протекание абсорбционных процессов характеризуется их статикой и кинетикой.

Статика абсорбции, т. е. равновесие между жидкой и газовой фазами, определяет состояние, которое устанавливается при весьма продолжительном соприкосновении фаз. Равновесие между фазами определяется термодинамическими свойствами компонента и поглотителя и зависит от состава одной из фаз, температуры и давления.

Кинетика абсорбции, т. е. скорость процесса массообмена, определяется движущей силой процесса (т. е. степенью отклонения системы от равновесного состояния), свойствами поглотителя, компонента и инертного газа, а также способом соприкосновения фаз (устройством абсорбционного аппарата и гидродинамическим режимом его работы). В абсорбционных аппаратах движущая сила, как правило, изменяется по их длине и зависит от характера взаимного движения фаз (противоток, прямоток, перекрестный ток и т. д.). При этом возможно осуществление непрерывного или ступенчатого контакта. В абсорберах с непрерывным контактом характер движения фаз не меняется по длине аппарата и изменение движущей силы происходит непрерывно. Абсорберы со ступенчатым контактом состоят из нескольких ступеней, последовательно соединенных по газу и жидкости, причем при переходе из ступени в ступень происходит скачкообразное изменение движений силы.

Различают химическую абсорбцию и хемосорбцию. При физической абсорбции растворение газа не сопровождается химической реакцией (или, по крайней мере, эта реакция не оказывает заметного влияния на процесс). В данном случае над раствором существует более или менее значительное равновесное давление компонента и поглощение последнего происходит лишь до тех пор, пока его парциальное давление в газовой фазе выше равновесного давления над раствором. Полное извлечение компонента из газа при этом возможно только при противотоке и подаче в абсорбер чистого поглотителя, не содержащего компонента.

При хемосорбции (абсорбция, сопровождаемая химической реакцией) абсорбируемый компонент связывается в жидкой фазе в виде химического соединения. При необратимой реакции равновесное давление компонента над раствором ничтожно мало и возможно полное его поглощение. При обратимой реакции над раствором существует заметное давление компонента, хотя и меньшее, чем при физической абсорбции.

Промышленное проведение абсорбции может сочетаться или не сочетаться с десорбцией. Если десорбцию не производят, поглотитель используется однократно. При этом в результате абсорбции получают готовый продукт, полупродукт или, если абсорбция проводиться с целью санитарной очистки газов, отбросный раствор, сливаемый (после обезвреживания) в канализацию.

Сочетание абсорбции с десорбцией позволяет многократно использовать поглотитель и выделять абсорбируемый компонент в чистом виде. Для этого раствор после абсорбера направляют на десорбцию, где происходит выделение компонента, а регенерированный (освобожденный от компонента) раствор вновь возвращают на абсорбцию. При такой схеме (круговой процесс) поглотитель не расходуется, если не считать некоторых его потерь, и все время циркулирует через систему абсорбер – десорбер – абсорбер.

В некоторых случаях (при наличии малоценного поглотителя) в процессе проведения десорбции отказываются от многократного применения поглотителя. При этом регенерированный в десорбере поглотитель сбрасывают в канализацию, а в абсорбер подают свежий поглотитель.

Условия, благоприятные для десорбции, противоположны условиям, способствующим абсорбции. Для осуществления десорбции над раствором должно быть заметное давление компонента, чтобы он мог выделяться в газовую фазу. Поглотители, абсорбция в которых сопровождается необратимой химической реакцией, не поддаются регенерации путем десорбции. Регенерацию таких поглотителей можно производить химическим методом.

Области применения абсорбционных процессов в химической и смежных отраслях промышленности весьма обширны. Некоторые из этих областей указаны ниже:

Получение готового продукта путем поглощения газа жидкостью. Примерами могут служить: абсорбция SO 3 в производстве серной кислоты; абсорбция HCl с получением соляной кислоты; абсорбция окислов азота водой (производство азотной кислоты) или щелочными растворами (получение нитратов) и т.д. При этим абсорбция проводится без последующей десорбции.

Разделение газовых смесей для выделения одного или нескольких ценных компонентов смеси. В этом случае применяемый поглотитель должен обладать возможно большей поглотительной способностью по отношению к извлекаемому компоненту и возможно меньшей по отношению к другим составным частям газовой смеси (избирательная, или селективная, абсорбция). При этом абсорбцию обычно сочетают с десорбцией в круговом процессе. В качестве примеров можно привести абсорбцию бензола из коксового газа, абсорбцию ацетилена из газов крекинга или пиролиза природного газа, абсорбцию бутадиена из контактного газа после разложения этилового спирта и т.п.

Очистка газа от примесей вредных компонентов. Такая очистка осуществляется прежде всего с целью удаления примесей, не допустимых при дальнейшей переработке газов (например, очистка нефтяных и коксовых газов от H 2 S, азотно-водородной смеси для синтеза аммиака от CO 2 и CO, осушка сернистого газа в производстве контактной серной кислоты и т.д.). Кроме того, производят санитарную очистку выпускаемых в атмосферу отходящих газов (например, очистка топочных газов от SO 2 ; очистка от Cl 2 абгаза после конденсации жидкого хлора; очистка от фтористых соединений газов, выделяющихся при производстве минеральных удобрений и т.п.).

В рассматриваемом случае извлекаемый компонент обычно используют, поэтому его выделяют путем десорбции или направляют раствор на соответствующую переработку. Иногда, если количество извлекаемого компонента очень мало и поглотитель не представляет ценности, раствор после абсорбции сбрасывают в канализацию.

Улавливание ценных компонентов из газовой смеси для предотвращения их потерь, а так же по санитарным соображениям, например рекуперация летучих растворителей (спирты, кетоны, эфиры и др.).

Следует отметить, что для разделения газовых смесей, очистки газов и улавливания ценных компонентов наряду с абсорбцией применяют и иные способы: адсорбцию, глубокое охлаждение и др. Выбор того или иного способа определяется технико-экономическими соображениями. Обычно абсорбция предпочтительнее в тех случаях, когда не требуется очень полного извлечения компонента.

При абсорбционных процессах массообмен происходит на поверхности соприкосновения фаз. Поэтому абсорбционные аппараты должны иметь развитую поверхность соприкосновения между газом и жидкостью. Исходя из способа создания этой поверхности абсорбционные аппараты можно подразделить наследующие группы:

а) Поверхностные абсорберы, в которых поверхностью контакта между фазами является зеркало жидкости (собственно поверхностные абсорберы) или поверхность текущей пленки жидкости (пленочные абсорберы). К этой же группе относятся насадочные абсорберы, в которых жидкость стекает по поверхности загруженной в абсорбер насадки из тел различной формы (кольца, кусковой материал и т. д.), и механические пленочные абсорберы. Для поверхностных абсорберов поверхность контакта в известной степени определяется геометрической поверхностью элементов абсорбера (например, насадки), хотя во многих случаях и не равна ей.

б) Барботажные абсорберы, в которых поверхность контакта развивается потоками газа, распределяющегося в жидкости в виде пузырьков и струек. Такое движение газа (барботаж) осуществляется путем пропускания его через заполненный жидкостью аппарат (сплошной барботаж) либо в аппаратах колонного типа с различного типа тарелками. Подобный характер взаимодействия газа и жидкости наблюдается также в насадочных абсорберах с затопленной насадкой.

В эту же группу входят барботажные абсорберы с перемешиванием жидкости механическими мешалками. В барботажных абсорберах поверхность контакта определяется гидродинамическим режимом (расходами газа и жидкости).

в) Распыливающие абсорберы, в которых поверхность контакта образуется путем распыления жидкости в массе газа на мелкие капли. Поверхность контакта определяется гидродинамическим режимом (расходом жидкости). К этой группе относятся абсорберы, в которых распыление жидкости производится форсунками (форсуночные, или полые, абсорберы), в токе движущегося с большой скоростью газа (скоростные прямоточные распыливающие абсорберы) или вращающимися механическими устройствами (механические распыливающие абсорберы).

Абсорбция - процесс разделение газовых смесей с помощью жидких поглотителей - абсорбентов. Если поглощаемый газ (абсорбтив) химически не взаимодействует с абсорбентом, то абсорбцию называют физической (не поглощаемую составную часть газовой смеси называют инертом, или инертным газом). Если же абсорбтив образует с абсорбентом химическое соединение, то процесс называют хемосорбцией. В технике часто встречается сочетание обоих видов абсорбции.

Физическая абсорбция (или просто абсорбция) обычно обратима. На этом свойстве абсорбционных процессов основано выделение поглощенного газа из раствора - десорбция.

Сочетание абсорбции и десорбции позволяет многократно применять поглотитель и выделять поглощенный газ в чистом виде. Часто десорбцию проводить не обязательно, так как полученный в результате абсорбции раствор является конечным продуктом, пригодным для дальнейшего использования.

В промышленности абсорбцию применяют для решения следующих основных задач:

1) для получения готового продукта (например, абсорбция SO 3 в производстве серной кислоты); при этом абсорбцию проводят без десорбции;

2) для выделения ценных компонентов из газовых смесей (например, абсорбция бензола из коксового газа); при этом абсорбцию проводят в сочетании с десорбцией;

3) для очистки газовых выбросов от вредных примесей (например, очистка топочных газов от SО 2). В этих случаях извлекаемые из газовых смесей компоненты обычно используют, поэтому их выделяют десорбцией;

4) для осушки газов.

Аппараты, в которых проводят процессы абсорбции, называют абсорберами.

Равновесие в процессе абсорбции

Для идеальных газов справедлив закон Генри:

Закон Генри : парциальное давление компонента газовой смеси над раствором пропорционально мольной доле этого компонента в растворе при достижении равновесия. Константа Генри (Е ) увеличивается с ростом температуры.

По закону Дальтона парциальное давление компонента газовой смеси пропорционально его мольной доле в газовой смеси:

,

где P – общее давление.

Объединяя законы Генри и Дальтона, можно установить влияние условий на растворимость газа в жидкости:
.

Таким образом, с увеличением давления в абсорбере и понижением температуры растворимость растет.

Чем хуже растворяется газ, тем больше повышают давление.

При растворении хорошо растворимых газов нет надобности в большом повышении давления, но необходимо отводить тепло, которое в этом случае выделяется в большом количестве.

Конструкции абсорберов выбираются с учётом растворимости газов. Например, для хорошо растворимых (аммиак-вода) можно использовать абсорберы-теплообменники. Для плохо растворимых необходима развитая поверхность контакта фаз, поэтому применяют насадочные, тарельчатые абсорберы.