Свойством железа не является. Железо

Железо - средний по химической активности металл. Входит в состав многих минералов: магнетита, гематита, лимонита, сидерита, пирита.

Образец лимонита

Химические и физические свойства железа

При нормальных условиях и в чистом виде железо - твердое вещество серебристо-серого цвета с ярким металлическим блеском. Железо - хороший электро- и теплопроводник. Это можно ощутить, дотронувшись в холодном помещении к железному предмету. Так как металл быстро проводит тепло, за короткий отрезок времени забирает большую часть тепла из человеческой кожи, поэтому во время прикосновения к нему ощущается холод.


Чистое железо

Температура плавления железа - 1538 °С, температура кипения - 2862 °С. Характерные свойства железа - хорошая пластичность и легкоплавкость.

Реагирует с простыми веществами: кислородом, галогенами (бромом, йодом, фтором, ), фосфором, серой. При сжигании железа образуются оксиды металла. В зависимости от условий проведения реакции и пропорций между двумя участниками, оксиды железа могут быть разнообразными. Уравнения реакций:

2Fe + O₂ = 2FeO;

4Fe + 3O₂ = 2Fe₂O₃;

3Fe + 2O₂ = Fe₃O₄.

Подобные реакции идут при высоких температурах. вы узнаете, какие опыты на изучение свойств железа можно провести дома.

Реакция железа с кислородом

Для реакции железа с кислородом необходимо предварительное нагревание. Железо сгорает ослепительным пламенем, разбрасывая - раскаленные частицы железной окалины Fe₃O₄. Такая же реакция железа и кислорода происходит и на воздухе, когда при механической обработке сильно нагревается от трения.


При сгорании железа в кислороде (или на воздухе) образуется железная окалина. Уравнение реакции:

3Fe + 2O₂ = Fe₃O₄

3Fe + 2O₂ = FeO Fe₂O₃.

Железная окалина - соединение, в котором железо имеет разные значения валентности.

Получение оксидов железа

Оксиды железа - это продукты взаимодействия железа с кислородом. Наиболее известные из них - FeO, Fe₂O₃ и Fe₃O₄.

Оксид железа (III) Fe₂O₃ - оранжево-красный порошок, образующийся при окислении железа на воздухе.


Вещество образуется при разложении соли трехвалентного железа на воздухе при высокой температуре. В фарфоровый тигель насыпается немного сульфата железа (III), а затем прокаливается на огне газовой горелки. При термическом разложении сульфат железа распадется на оксид серы и оксид железа.

Оксид железа (II, III) Fe₃O₄ образуется при сжигании порошкообразного железа в кислороде или на воздухе. Для получения оксида в фарфоровый тигель насыпается немного смешанного с нитратом натрия или калия тонкого железного порошка. Смесь поджигается газовой горелкой. При нагревании нитраты калия и натрия разлагаются с выделением кислорода. Железо в кислороде горит, образуя оксид Fe₃O₄. После окончания горения полученный оксид остается на дне фарфоровой чашки в виде железной окалины.

Внимание! Не пытайтесь повторить эти опыты самостоятельно!

Оксид железа (II) FeO - это черный порошок, который образуется при разложении оксалата железа в инертной атмосфере.

  • Обозначение - Fe (Iron);
  • Период - IV;
  • Группа - 8 (VIII);
  • Атомная масса - 55,845;
  • Атомный номер - 26;
  • Радиус атома = 126 пм;
  • Ковалентный радиус = 117 пм;
  • Распределение электронов - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 ;
  • t плавления = 1535°C;
  • t кипения = 2750°C;
  • Электроотрицательность (по Полингу/по Алпреду и Рохову) = 1,83/1,64;
  • Степень окисления: +8, +6, +4, +3, +2, +1, 0;
  • Плотность (н. у.) = 7,874 г/см 3 ;
  • Молярный объем = 7,1 см 3 /моль.

Соединения железа :

Железо является самым распространенным металлом в земной коре (5,1% по массе) после алюминия .

На Земле железо в свободном состоянии встречается в незначительных количествах в виде самородков, а также в упавших метеоритах.

Промышленным способом железо добывают на железнорудных месторождениях, из железосодержащих минералов: магнитного, красного, бурого железняка.

Следует сказать, что железо входит в состав многих природных минералов, обуславливая их природную окраску. Окраска минералов зависит зависит от концентрации и соотношения ионов железа Fe 2+ /Fe 3+ , а также от атомов, окружающих эти ионы. Например, присутствие примесей ионов железа влияет на окраску многих драгоценных и полудрагоценных камней: топазов (от бледно-желтого до красного), сапфиров (от голубого до темно-синего), аквамаринов (от светло-голубого до зеленовато-голубого) и проч.

Железо содержится в тканях животных и растений, например, в организме взрослого человека присутствует около 5 г железа. Железо является жизненно важным элементом, оно входит в состав белка гемоглобина, участвуя в транспортировке кислорода от легких к тканям и клеткам. При недостатке железа в организме человека развивается малокровие (железодефицитная анемия).


Рис. Строение атома железа .

Электронная конфигурация атома железа - 1s 2 2s 2 2p 6 3s 2 3p 6 3d 6 4s 2 (см. Электронная структура атомов). В образовании химических связей с другими элементами могут участвовать 2 электрона, находящихся на внешнем 4s-уровне + 6 электронов 3d-подуровня (всего 8 электронов), поэтому в соединениях железо может принимать степени окисления +8, +6, +4, +3, +2, +1, (наиболее часто встречаются +3, +2). Железо обладает средней химической активностью.


Рис. Степени окисления железа: +2, +3.

Физические свойства железа:

  • металл серебристо-белого цвета;
  • в чистом виде достаточно мягкий и пластичный;
  • хобладает хорошей тепло- и электропроводимостью.

Железо существует в виде четырех модификаций (различаются строением кристаллической решетки): α-железо; β-железо; γ-железо; δ-железо.

Химические свойства железа

  • реагирует с кислородом, в зависимости от температуры и концентрации кислорода могут образовываться различные продукты или смесь продуктов окисления железа (FeO, Fe 2 O 3 , Fe 3 O 4):
    3Fe + 2O 2 = Fe 3 O 4 ;
  • окисление железа при низких температурах:
    4Fe + 3O 2 = 2Fe 2 O 3 ;
  • реагирует с водяным паром:
    3Fe + 4H 2 O = Fe 3 O 4 + 4H 2 ;
  • мелко раздробленное железо реагирует при нагревании с серой и хлором (сульфид и хлорид железа):
    Fe + S = FeS; 2Fe + 3Cl 2 = 2FeCl 3 ;
  • при высоких температурах реагирует с кремнием, углеродом, фосфором:
    3Fe + C = Fe 3 C;
  • с другими металлами и с неметаллами железо может образовывать сплавы;
  • железо вытесняет менее активные металлы из их солей:
    Fe + CuCl 2 = FeCl 2 + Cu;
  • с разбавленными кислотами железо выступает в роли восстановителя, образуя соли:
    Fe + 2HCl = FeCl 2 + H 2 ;
  • с разбавленной азотной кислотой железо образует различные продукты восстановления кислоты, в зависимости от ее концентрации (N 2 , N 2 O, NO 2).

Получение и применение железа

Промышленное железо получают выплавкой чугуна и стали.

Чугун - это сплав железа с примесями кремния, марганца, серы, фосфора, углерода. Содержание углерода в чугуне превышает 2% (в стали менее 2%).

Чистое железо получают:

  • в кислородных конверторах из чугуна;
  • восстановлением оксидов железа водородом и двухвалентным оксидом углерода;
  • электролизом соответствующих солей.

Чугун получают из железных руд восстановлением оксидов железа. Выплавку чугуна осуществляют в доменных печах. В качестве источника тепла в доменной печи используется кокс.

Доменная печь является очень сложным техническим сооружением высотой в несколько десятков метров. Она выкладывается из огнеупорного кирпича и защищается внешним стальным кожухом. По состоянию на 2013 год самая крупная доменная печь была построена в Южной Корее сталелитейной компанией POSCO на металлургическом заводе в городе Кванъян (объем печи после модернизации составил 6000 кубометров при ежегодной производительности 5 700 000 тонн).


Рис. Доменная печь .

Процесс выплавки чугуна в доменной печи идет непрерывно в течение нескольких десятилетий, пока печь не выработает свой ресурс.


Рис. Процесс выплавки чугуна в доменной печи .

  • обогащенные руды (магнитный, красный, бурый железняк) и кокс засыпаются через колошник, расположенный в самом верху доменной печи;
  • процессы восстановления железа из руды под действием оксида углерода (II) протекают в средней части доменной печи (шахте) при температуре 450-1100°C (оксиды железа восстанавливаются до металла):
    • 450-500°C - 3Fe 2 O 3 + CO = 2Fe 3 O 4 + CO 2 ;
    • 600°C - Fe 3 O 4 + CO = 3FeO + CO 2 ;
    • 800°C - FeO + CO = Fe + CO 2 ;
    • часть двухвалентного оксида железа восстанавливается коксом: FeO + C = Fe + CO.
  • параллельно идет процесс восстановления оксидов кремния и марганца (входят в железную руду в виде примесей), кремний и марганец входят в состав выплавляющегося чугуна:
    • SiO 2 + 2C = Si + 2CO;
    • Mn 2 O 3 + 3C = 2Mn + 3CO.
  • при термическом разложении известняка (вносится в доменную печь) образуется оксид кальция, который реагирует с оксидами кремния и алюминия, содержащихся в руде:
    • CaCO 3 = CaO + CO 2 ;
    • CaO + SiO 2 = CaSiO 3 ;
    • CaO + Al 2 O 3 = Ca(AlO 2) 2 .
  • при 1100°C процесс восстановления железа прекращается;
  • ниже шахты располагается распар, самая широкая часть доменной печи, ниже которой следует заплечник, в котором выгорает кокс и образуются жидкие продукты плавки - чугун и шлаки, накапливающиеся в самом низу печи - горне;
  • в верхней части горна при температуре 1500°C в струе вдуваемого воздуха происходит интенсивное сгорание кокса: C + O 2 = CO 2 ;
  • проходя через раскаленный кокс, оксид углерода (IV) превращается в оксид углерода (II), являющийся восстановителем железа (см. выше): CO 2 + C = 2CO;
  • шлаки, образованные силикатами и алюмосиликатами кальция, располагаются выше чугуна, защищая его от действия кислорода;
  • через специальные отверстия, расположенные на разных уровнях горна, чугун и шлаки выпускаются наружу;
  • бОльшая часть чугуна идет на дальнейшую переработку - выплавку стали.

Сталь выплавляют из чугуна и металлолома конверторным способом (мартеновский уже устарел, хотя еще и применяется) или электроплавкой (в электропечах, индукционных печах). Суть процесса (передела чугуна) заключается в понижении концентрации углерода и других примесей путем окисления кислородом.

Как уже было сказано выше, концентрация углерода в стали не превышает 2%. Благодаря этому, сталь в отличие от чугуна достаточно легко поддается ковке и прокатке, что позволяет изготавливать из нее разнообразные изделия, обладающие высокой твердостью и прочностью.

Твердость стали зависит от содержания углерода (чем больше углерода, тем тверже сталь) в конкретной марке стали и условий термообработки. При отпуске (медленном охлаждении) сталь становится мягкой; при закалке (быстром охлаждении) сталь получается очень твердой.

Для придания стали нужных специфических свойств в нее добавляют лигирующие добавки: хром, никель, кремний, молибден, ванадий, марганец и проч.

Чугун и сталь являются важнейшими конструкционными материалами в подавляющем большинстве отраслей народного хозяйства.

Биологическая роль железа:

  • в организме взрослого человека содержится около 5 г железа;
  • железо играет важную роль в работе кроветворных органов;
  • железо входит в состав многих сложных белковых комплексов (гемоглобина, миоглобина, различных ферментов).

Цели урока:

  • сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им степени окисления и природы окислителя;
  • развивать теоретическое мышление учащихся и их умения прогнозировать свойства вещества, опираясь на знания о его строении;
  • развивать понятийное мышление таких операций, как анализ, сравнение, обобщение, систематизация;
  • развивать такие качества мышления, как объективность, лаконизм и ясность, самоконтроль и активность.

Задачи урока:

  • актуализировать знания учащихся по теме: “Строение атома”;
  • организовать коллективную работу учащихся от постановки учебной задачи до конечного результата (составить опорную схему к уроку);
  • обобщить материал по теме: “Металлы” и рассмотреть свойства железа и его применение;
  • организовать самостоятельную исследовательскую работу в парах по изучению химических свойств железа;
  • организовать взаимоконтроль учащихся на уроке.

Тип урока: изучение нового материала.

Реактивы и оборудование:

  • железо (порошок, пластина, скрепка),
  • сера,
  • соляная кислота,
  • сульфат меди (II),
  • кристаллическая решетка железа,
  • плакаты для игры,
  • магнит,
  • подборка иллюстраций по теме,
  • пробирки,
  • спиртовка,
  • спички,
  • ложка для сжигания горючих веществ,
  • географические карты.

Структура урока

  1. Вводная часть.
  2. Изучение нового материала.
  3. Сообщение домашнего задания.
  4. Закрепление изученного материала.

Ход урока

1. Вводная часть

Организационный момент.

Проверка наличия учащихся.

Сообщение темы урока. Запись темы на доске и в тетрадях учащихся.

2. Изучение нового материала

– Как вы думаете, как будет звучать тема нашего сегодняшнего урока?

1. Появление железа в человеческой цивилизации положило начало железному веку.

Откуда же древние люди брали железо в то время, когда еще не умели добывать его из руды? Железо в переводе с шумерского языка – это металл, “капнувший с неба, небесный”. Первое железо, с которым столкнулось человечество, было железом из метеоритов. Впервые доказал, что “железные камни падают с неба”, в 1775 г. русский ученый П.С. Палас, который привез в Петербург глыбу самородного железного метеорита весом 600 кг. Самым крупным железным метеоритом является найденный в 1920 г. в Юго-Западной Африке метеорит “Гоба” весом около 60 т. Вспомним гробницу Тутанхамона: золото, золото. Великолепная работа восхищает, блеск слепит глаза. Но вот что пишет К.Керрам в книге “Боги, гробницы, ученые” о маленьком железном амулете Тутанхамона: “Амулет относится к числу наиболее ранних изделий Египта, и …в гробнице, наполненной чуть ли не до отказа золотом, именно эта скромная находка имела наибольшую с точки зрения истории культуры ценность”. Всего несколько железных изделий было найдено в гробнице фараона, среди них железный амулет бога Гора, небольшой кинжальчик с железным клинком и золотой рукояткой, маленькая железная скамеечка “Урс”.

Ученые предполагают, что именно страны Малой Азии, где проживали племена хеттов, были местом возникновения черной металлургии. В Европу железо пришло из Малой Азии уже в I тыс. до н.э.; так в Европе начался железный век.

Знаменитую булатную сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее изготовления держалась в секрете много веков.

Мне приснилась иная печаль
Про седую дамасскую сталь.
Я увидел, как сталь закалялась,
Как из юных рабов одного
Выбирали, кормили его,
Чтобы плоть его сил набиралась.
Выжидали положенный срок,
А потом раскаленный клинок
В мускулистую плоть погружали,
Вынимали готовый клинок.
Крепче стали, не видел Восток,
Крепче стали и горше печали.

Поскольку булат – это сталь с очень большой твердостью и упругостью, изготовленные из нее изделия обладают способностью не тупиться, будучи остро заточенными. Раскрыл секрет булата русский металлург П.П. Аносов. Он очень медленно охлаждал раскаленную сталь в специальном растворе технического масла, подогретого до определенной температуры; в процессе охлаждения сталь ковалась.

(Демонстрация рисунков.)

Железо – серебристо-серый металл


Железо – серебристо-серый металл

Эти гвозди сделаны из железа

Сталь используется в автомобилестроении

Сталь используется для изготовления медицинских инструментов

Сталь используется для изготовления локомотивов


Все металлы подвержены коррозии


Все металлы подвержены коррозии

2. Положение железа в ПСХЭМ.

Выясняем положение железа в ПСХЭМ, заряд ядра и распределение электронов в атоме.

3. Физические свойства железа.

– Какие физические свойства железа вы знаете?

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии (вспомним, что такое коррозия? Демонстрация коррозионного гвоздя) и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

4. Химические свойства железа.

Исходя из знаний о химических свойствах металлов, как вы думаете, какими химическими свойствами будет обладать железо?

Демонстрация опытов.

  • Взаимодействие железа с серой.

Практическая работа.

  • Взаимодействие железа с соляной кислотой.
  • Взаимодействие железа с сульфатом меди (II).

5. Применение железа.

Беседа по вопросам:

– Как выдумаете, каково распространение железа в природе?

Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

– В виде, каких соединений железо встречается в природе?

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более. Основными железными рудами являются: магнетит – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии; гематит – Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе; лимонит – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму; пирит – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале. (Работа с контурными картами).

– Какова роль железа в жизни человека и растений?

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

Примерно 90% используемых человечеством металлов – это сплавы на основе железа. Железа выплавляется в мире очень много, примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Сплавы на основе железа универсальны, технологичны, доступны, дешевы. Железу еще долго быть фундаментом цивилизации.

3. Сообщение домашнего материала

14, упр. № 6, 8, 9 (по рабочей тетради к учебнику О.С Габриелян “Химия 9”, 2003 г.).

4. Закрепление изученного материала

  1. Используя опорную схему , записанную на доске, сделайте вывод: что же представляет собой железо и каковы его свойства?
  2. Графический диктант (заранее приготовить листочки с начерченной прямой, разделенной на 8 отрезков и пронумерованной соответственно вопросам диктанта. Отметить шалашиком “^” на отрезке номер положения, которое считается верным).

Вариант 1.

  1. Железо – это активный щелочной металл.
  2. Железо легко куется.
  3. Железо входит в состав сплава бронзы.
  4. На внешнем энергетическом уровне атома железа 2 электрона.
  5. Железо взаимодействует с разбавленными кислотами.
  6. С галогенами образует галогениды со степенью окисления +2.
  7. Железо не взаимодействует с кислородом.
  8. Железо можно получить путем электролиза расплава его соли.
1 2 3 4 5 6 7 8

Вариант 2.

  1. Железо – это металл серебристо-белого цвета.
  2. Железо не обладает способностью намагничиваться.
  3. Атомы железа проявляют окислительные свойства.
  4. На внешнем энергетическом уровне атома железа 1 электрон.
  5. Железо вытесняет медь из растворов ее солей.
  6. С галогенами образует соединения со степенью окисления +3.
  7. С раствором серной кислоты образует сульфат железа (III).
  8. Железо не подвергается коррозии.
1 2 3 4 5 6 7 8

После выполнения задания учащиеся меняются своими работами и проверяют их (ответы к работам вывешены на доске, или показать через проектор).

Критерии отметки:

  • “5” – 0 ошибок,
  • “4” – 1-2 ошибки,
  • “3” – 3-4 ошибки,
  • “2” – 5 и больше ошибок.

Используемая литература

  1. Габриелян О.С. Химия 9 класс. – М.: Дрофа, 2001.
  2. Габриелян О.С. Книга для учителя. – М.: Дрофа, 2002.
  3. Габриелян О.С. Химия 9 класс. Рабочая тетрадь. – М.: Дрофа, 2003.
  4. Индустрия образования. Сборник статей. Выпуск 3. – М.: МГИУ, 2002.
  5. Малышкина В. Занимательная химия. – Санкт-Петербург, “Тригон”, 2001.
  6. Программно-методические материалы. Химия 8-11 классы. – М.: Дрофа, 2001.
  7. Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения. – М.: Химия, 1995.
  8. Я иду на урок Химии. Книга для учителя. – М.: “Первое сентября”, 2000.

Приложения

Знаете ли вы, что?

Железо – один из важнейших элементов жизни. Кровь содержит железо, и именно оно определяет цвет крови, а также ее основное свойство – способность связывать и отдавать кислород. Такой способностью обладает комплексное соединение – гем – составная часть молекулы гемоглобина. Кроме гемоглобина железо в нашем организме есть еще в миоглобине – белке, запасающем кислород в мышцах. Есть также железосодержащие ферменты.

Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет. Это знаменитая Кутубская колонна высотой около семи метров и массой 6.5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. До н. э. Ржавление железа – образование метагидроксида железа – связано с взаимодействием его с влагой и кислородом воздуха.

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.

В 1934 г. в "Горном журнале" появилась статья "Улучшение железа и стали посредством...ржавления в земле". Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности. Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.

Гематит

Гематит, или красный железняк – основная руда главного металла современности – железа. Содержание железа достигает в нем 70%. Гематит известен с давних пор. В Вавилоне и Древнем Египте он использовался в украшениях, для изготовления печатей, наряду с халцедоном служил излюбленным материалом в качестве резного камня. У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою. В древности и в Средние века гематит слыл лекарством, останавливающим кровь. Порошок из этого минерала издревле использовали для золотых и серебряных изделий.

Название минерала происходит от греческого дета – кровь, что связано с вишневым или сургучно-красным цветом порошка этого минерала.

Важной особенностью минерала является способность стойко хранить цвет и передавать его другим минералам, в которые попадает хотя бы небольшая примесь гематита. Розовый цвет гранитных колонн Исаакиевского собора – это цвет полевых шпатов, которые в свою очередь окрашены тонкораспыленным гематитом. Живописные узоры яшмы, используемой при отделке станций столичного метро, оранжевые и розовые сердолики Крыма, кораллово-красные прослойки сильвина и карналлита в соляных толщах – все обязаны своим цветом гематиту.

Издавна из гематита делали красную краску. Все известные фрески, выполненные 15-20 тыс. лет назад, – замечательные бизоны Альтамирской пещеры и мамонты из знаменитой Капской пещеры – выполнены и коричневыми оксидами и гидроксидами железа.

Магнетит

Магнетит, или магнитный железняк – минерал, содержащий 72% железа. Это самая богатая железная руда. Замечательное в этом минерале его природный магнетизм – свойство, благодаря которому он был открыт.

Как сообщал римский ученый Плиний, магнетит назван в честь греческого пастуха Магнеса. Магнес пас стадо возле холма над р. Хинду в Фессалии. Неожиданно посох с железным наконечником и подбитые гвоздями сандалии притянула к себе гора, сложенная сплошным серым камнем. Минерал магнетит дал в свою очередь название магниту, магнитному полю и всему загадочному явлению магнетизма, которое пристально изучается со времен Аристотеля и по сей день.

Магнитные свойства этого минерала и сегодня используются, прежде всего для поиска месторождений. Именно так были открыты уникальные месторождения железа на площади Курской магнитной аномалии (КМА). Минерал тяжелый: образец магнетита размером с яблоко весит 1,5 кг.

В древности магнетит наделяли всевозможными лечебными свойствами и способностью творить чудеса. Его использовали для извлечения металла при ранениях, а Иван Грозный среди своих сокровищ наравне с другими камнями хранил его непримечательные кристаллы.

Пирит – минерал, подобный огню

Пирит – один из тех минералов, увидев который хочется воскликнуть: "Неужели это так и было?" Трудно поверить, что высший класс огранки и полировки, поражающий нас в рукотворных изделиях, в кристаллах пирита – щедрый дар природы.

Пирит получил свое название от греческого слова "пирос" – огонь, что связано с его свойством искрить при ударе стальными предметами. Этот красивый минерал поражает золотистым цветом, ярким блеском на почти всегда четких гранях. Благодаря своим свойствам пирит известен с глубокой древности, а во время эпидемий золотой лихорадки пиритовые блестки в кварцевой жиле вскружили не одну горячую голову. Да и сейчас начинающие любители камня нередко принимают пирит за золото.

Пирит – минерал вездесущий: он образуется из магмы, из паров и растворов, и даже из осадков, каждый раз в специфических формах и сочетаниях. Известен случай, когда за несколько десятилетий в пирит превратилось тело упавшего в шахту рудокопа. Железа в пирите немало – 46,5%, но извлекать его дорого и невыгодно.

История

Железо, как инструментальный материал, известно с древнейших времён. Самые древние изделия из железа, найденные при археологических раскопках, датируются 4-м тысячелетием до н. э. и относятся к древнешумерской и древнеегипетской цивилизациям. Это изготовленные из метеоритного железа, то есть сплава железа и никеля (содержание последнего колеблется от 5 до 30 %), украшения из египетских гробниц (около 3800 года до н. э.) и кинжал из шумерского города Ура (около 3100 года до н. э.). От небесного происхождения метеоритного железа происходит, видимо, одно из названий железа в греческом и латинском языках: «сидер» (что значит «звёздный»).

Изделия из железа, полученного выплавкой, известны со времени расселения арийских племён из Европы в Азию, острова Средиземного моря, и далее (конец 4-го и 3-е тысячелетие до н. э. ). Самые древние железные инструменты из известных - стальные лезвия, найденные в каменной кладке пирамиды Хеопса в Египте (построена около 2530 года до н. э. ). Как показали раскопки в Нубийской пустыне, уже в те времена египтяне, стараясь отделить добываемое золото от тяжёлого магнетитового песка, прокаливали руду с отрубями и подобными веществами, содержащими углерод. В результате на поверхности расплава золота всплывал слой тестообразного железа, который обрабатывали отдельно. Из этого железа ковались орудия, в том числе найденные в пирамиде Хеопса. Однако после внука Хеопса Менкаура (2471-2465 год до н. э.) в Египте наступила смута: знать во главе со жрецами бога Ра свергла правящую династию, и началась чехарда узурпаторов, закончившаяся воцарением фараона следующей династии Усеркара, которого жрецы объявили сыном и воплощением самого бога Ра (с тех пор это стало официальным статусом фараонов). В ходе этой смуты культурные и технические знания египтян пришли в упадок, и, так же как деградировало искусство строительства пирамид, технология производства железа была утеряна , вплоть до того, что позднее, осваивая в поисках медной руды Синайский полуостров, египтяне не обратили никакого внимания на имевшиеся там залежи железной руды, а получали железо от соседних хеттов и митаннийцев.

Первые освоили производства железа хатты , на это указывает древнейшее (2-е тысячелетие до н. э.) упоминание железа в текстах хеттов , основавших свою империю на территории хатттов (современной Анатолии в Турции). Так, в тексте хеттского царя Анитты (около 1800 года до н. э.) говорится:

Когда на город Пурусханду в поход я пошел, человек из города Пурусханды ко мне поклониться пришел (…?) и он мне 1 железный трон и 1 железный скипетр (?) в знак покорности (?) преподнес…

(источник: Гиоргадзе Г. Г. // Вестник древней истории. 1965. № 4.)

В древности мастерами железных изделий слыли халибы . В легенде об аргонавтах (их поход в Колхиду состоялся примерно за 50 лет до троянской войны) рассказывается, что царь Колхиды Эет дал Ясону железный плуг чтобы он вспахал поле Ареса, и описываются его подданные халиберы:

Они не пашут землю, не сажают плодовые деревья, не пасут стада на тучных лугах; они добывают руду и железо из необработанной земли и выменивают на них продукты питания. День не начинается для них без тяжкого труда, в темноте ночи и густом дыму проводят они, работая весь день…

Аристотель описал их способ получения стали: «халибы несколько раз промывали речной песок их страны - тем самым выделяя чёрный шлих (тяжелая фракция состоящая в основном из магнетита и гематита), и плавили в печах; полученный таким образом металл имел серебристый цвет и был нержавеющим».

В качестве сырья для выплавки стали использовались магнетитовые пески, которые часто встречаются по всему побережью Чёрного моря : эти магнетитовые пески состоят из смеси мелких зёрен магнетита, титано-магнетита или ильменита , и обломков других пород, так что выплавляемая халибами сталь была легированной, и имела превосходные свойства. Такой своеобразный способ получения железа говорит о том, что халибы лишь распространили железо как технологический материал, но их способ не мог быть методом повсеместного промышленного производства железных изделий. Однако их производство послужило толчком для дальнейшего развития металлургии железа.

В самой глубокой древности железо ценилось дороже золота, и по описанию Страбона , у африканских племён за 1 фунт железа давали 10 фунтов золота, а по исследованиям историка Г. Арешяна стоимости меди , серебра , золота и железа у древних хеттов были в соотношении 1: 160: 1280: 6400. В те времена железо использовалось как ювелирный металл, из него делали троны и другие регалии царской власти: например, в библейской книге Второзаконие 3,11 описан «одр железный» рефаимского царя Ога.

В гробнице Тутанхамона (около 1350 года до н. э.) был найден кинжал из железа в золотой оправе - возможно, подаренный хеттами в дипломатических целях. Но хетты не стремились к широкому распространению железа и его технологий, что видно и из дошедшей до нас переписки египетского фараона Тутанхамона и его тестя Хаттусиля - царя хеттов. Фараон просит прислать побольше железа, а царь хеттов уклончиво отвечает, что запасы железа иссякли, а кузнецы заняты на сельскохозяйственных работах, поэтому он не может выполнить просьбу царственного зятя, и посылает только один кинжал из «хорошего железа» (то есть стали). Как видно, хетты старались использовать свои знания для достижения военных преимуществ, и не давали другим возможности сравняться с ними. Видимо, поэтому железные изделия получили широкое распространение только после Троянской войны и падения державы хеттов, когда благодаря торговой активности греков технология железа стала известной многим, и были открыты новые месторождения железа и рудники. Так на смену «Бронзовому» веку настал век «Железный».

По описаниям Гомера, хотя во время Троянской войны (примерно 1250 год до н. э.) оружие было в основном из меди и бронзы, но железо уже было хорошо известно и пользовалось большим спросом, хотя больше как драгоценный металл. Например, в 23-й песне «Илиады » Гомер рассказывает, что Ахилл наградил диском из железной крицы победителя в соревновании по метанию диска. Это железо ахейцы добывали у троянцев и сопредельных народов (Илиада 7,473), в том числе у халибов, которые воевали на стороне троянцев :

«Прочие мужи ахейские меной вино покупали,
Те за звенящую медь, за седое железо меняли,
Те за воловые кожи или волов круторогих,
Те за своих полоненых. И пир уготовлен веселый…»

Возможно, железо было одной из причин, побудивших греков-ахейцев двинуться в Малую Азию, где они узнали секреты его производства. А раскопки в Афинах показали, что уже около 1100 года до н. э. и позднее уже широко были распространены железные мечи, копья, топоры, и даже железные гвозди. В библейской книге Иисуса Навина 17,16 (ср. Судей 14,4) описывается, что филистимляне (библейские «PILISTIM», а это были протогреческие племена, родственные позднейшим эллинам, в основном пеласги) имели множество железных колесниц, то есть, в это время железо уже стало широко применяться в больших количествах.

Гомер в «Илиаде» и «Одиссее» называет железо «многотрудный металл», и описывает закалку орудий:

«Расторопный ковач, изготовив топор иль секиру,
В воду металл, раскаливши его, чтоб двойную
Он крепость имел, погружает…»

Гомер называет железо многотрудным, потому что в древности основным методом его получения был сыродутный процесс: перемежающиеся слои железной руды и древесного угля прокаливались в специальных печах (горнах - от древнего «Horn» - рог, труба, первоначально это была просто труба, вырытая в земле, обычно горизонтально в склоне оврага). В горне окислы железа восстанавливаются до металла раскалённым углём, который отбирает кислород, окисляясь до окиси углерода, и в результате такого прокаливания руды с углём получалось тестообразное кричное (губчатое) железо. Крицу очищали от шлаков ковкой, выдавливая примеси сильными ударами молота. Первые горны имели сравнительно низкую температуру - заметно меньше температуры плавления чугуна , поэтому железо получалось сравнительно малоуглеродистым. Чтобы получить крепкую сталь приходилось много раз прокаливать и проковывать железную крицу с углём, при этом поверхностный слой металла дополнительно насыщался углеродом и упрочнялся. Так получалось «хорошее железо» - и хотя это требовало больших трудов, изделия, полученные таким способом, были существенно более крепкими и твердыми, чем бронзовые.

В дальнейшем научились делать более эффективные печи (в русском языке - домна , домница) для производства стали, и применили меха для подачи воздуха в горн. Уже римляне умели доводить температуру в печи до плавления стали (около 1400 градусов, а чистое железо плавится при 1535 градусах). При этом образуется чугун с температурой плавления 1100-1200 градусов, очень хрупкий в твёрдом состоянии (даже не поддающийся ковке) и не обладающий упругостью стали. Первоначально его считали вредным побочным продуктом (англ. pig iron , по-русски, свинское железо, чушки, откуда, собственно, и происходит слово чугун), но потом обнаружилось, что при повторной переплавке в печи с усиленным продуванием через него воздуха, чугун превращается в сталь хорошего качества, так как лишний углерод выгорает. Такой двухстадийный процесс производства стали из чугуна оказался более простым и выгодным, чем кричный, и этот принцип используется без особых изменений многие века, оставаясь и до наших дней основным способом производства железных материалов.

Библиография: Карл Бакс. Богатства земных недр. М.: Прогресс, 1986, стр. 244, глава «Железо»

Происхождение названия

Имеется несколько версий происхождения славянского слова «железо» (белор. жалеза , укр. залізо , ст.-слав. желѣзо , болг. желязо , сербохорв. жељезо , польск. żelazo , чеш. železo , словен. železo ).

Одна из этимологий связывает праслав. *želězo с греческим словом χαλκός , что означало железо и медь, согласно другой версии *želězo родственно словам *žely «черепаха » и *glazъ «скала», с общей семой «камень » . Третья версия предполагает древнее заимствование из неизвестного языка .

Германские языки заимствовали название железа (готск. eisarn , англ. iron , нем. Eisen , нидерл. ijzer , дат. jern , швед. järn ) из кельтских .

Пракельтское слово *isarno- (> др.-ирл. iarn, др.-брет. hoiarn), вероятно, восходит к пра-и.е. *h 1 esh 2 r-no- «кровавый» с семантическим развитием «кровавый» > «красный» > «железо». Согласно другой гипотезе данное слово восходит к пра-и.е. *(H)ish 2 ro- «сильный, святой, обладающий сверхъестественной силой» .

Древнегреческое слово σίδηρος , возможно, было заимствовано из того же источника, что и славянское, германское и балтийское слова для серебра .

Название природного карбоната железа (сидерита) происходит от лат. sidereus - звёздный; действительно, первое железо, попавшее в руки людям, было метеоритного происхождения. Возможно, это совпадение не случайно. В частности древнегреческое слово сидерос (σίδηρος) для железа и латинское sidus , означающее «звезда», вероятно, имеют общее происхождение.

Изотопы

Природное железо состоит из четырёх стабильных изотопов : 54 Fe (изотопная распространённость 5,845 %), 56 Fe (91,754 %), 57 Fe (2,119 %) и 58 Fe (0,282 %). Так же известно более 20 нестабильных изотопов железа с массовыми числами от 45 до 72, наиболее устойчивые из которых - 60 Fe (период полураспада по уточнённым в 2009 году данным составляет 2,6 миллиона лет ), 55 Fe (2,737 года), 59 Fe (44,495 суток) и 52 Fe (8,275 часа); остальные изотопы имеют период полураспада менее 10 минут .

Изотоп железа 56 Fe относится к наиболее стабильным ядрам: все следующие элементы могут уменьшить энергию связи на нуклон путём распада, а все предыдущие элементы, в принципе, могли бы уменьшить энергию связи на нуклон за счёт синтеза. Полагают, что железом оканчивается ряд синтеза элементов в ядрах нормальных звёзд (см. Железная звезда), а все последующие элементы могут образоваться только в результате взрывов сверхновых .

Геохимия железа

Гидротермальный источник с железистой водой. Оксиды железа окрашивают воду в бурый цвет

Железо - один из самых распространённых элементов в Солнечной системе, особенно на планетах земной группы, в частности, на Земле. Значительная часть железа планет земной группы находится в ядрах планет, где его содержание, по оценкам, около 90 %. Содержание железа в земной коре составляет 5 %, а в мантии около 12 %. Из металлов железо уступает по распространённости в коре только алюминию . При этом в ядре находится около 86 % всего железа, а в мантии 14 %. Содержание железа значительно повышается в изверженных породах основного состава, где оно связано с пироксеном, амфиболом, оливином и биотитом. В промышленных концентрациях железо накапливается в течение почти всех экзогенных и эндогенных процессов, происходящих в земной коре. В морской воде железо содержится в очень малых количествах 0,002-0,02 мг/л. В речной воде несколько выше - 2 мг/л.

Геохимические свойства железа

Важнейшая геохимическая особенность железа - наличие у него нескольких степеней окисления. Железо в нейтральной форме - металлическое - слагает ядро земли, возможно, присутствует в мантии и очень редко встречается в земной коре. Закисное железо FeO - основная форма нахождения железа в мантии и земной коре. Окисное железо Fe 2 O 3 характерно для самых верхних, наиболее окисленных, частей земной коры, в частности, осадочных пород .

По кристаллохимическим свойствам ион Fe 2+ близок к ионам Mg 2+ и Ca 2+ - другим главным элементам, составляющим значительную часть всех земных пород. В силу кристаллохимического сходства железо замещает магний и, частично, кальций во многих силикатах. При этом содержание железа в минералах переменного состава обычно увеличивается с уменьшением температуры.

Минералы железа

Известно большое число руд и минералов, содержащих железо. Наибольшее практическое значение имеют красный железняк (гематит , Fe 2 O 3 ; содержит до 70 % Fe), магнитный железняк (магнетит , FeFe 2 O 4 , Fe 3 O 4 ; содержит 72,4 % Fe), бурый железняк или лимонит (гётит и гидрогётит, соответственно FeOOH и FeOOH·nH 2 O). Гётит и гидрогётит чаще всего встречаются в корах выветривания , образуя так называемые «железные шляпы», мощность которых достигает несколько сотен метров. Также они могут иметь осадочное происхождение, выпадая из коллоидных растворов в озёрах или прибрежных зонах морей. При этом образуются оолитовые , или бобовые, железные руды. В них часто встречается вивианит Fe 3 (PO 4) 2 ·8H 2 O, образующий чёрные удлинённые кристаллы и радиально-лучистые агрегаты .

В природе также широко распространены сульфиды железа - пирит FeS 2 (серный или железный колчедан) и пирротин . Они не являются железной рудой - пирит используют для получения серной кислоты, а пирротин часто содержит никель и кобальт.

По запасам железных руд Россия занимает первое место в мире. Содержание железа в морской воде - 1·10 −5 -1·10 −8 %.

Другие часто встречающиеся минералы железа:

  • Сидерит - FeCO 3 - содержит примерно 35 % железа. Обладает желтовато-белым (с серым или коричневым оттенком в случае загрязнения) цветом. Плотность равна 3 г/см³ и твёрдость 3,5-4,5 по шкале Мооса.
  • Марказит - FeS 2 - содержит 46,6 % железа. Встречается в виде жёлтых, как латунь, бипирамидальных ромбических кристаллов с плотностью 4,6-4,9 г/см³ и твёрдостью 5-6 по шкале Мооса.
  • Лёллингит - FeAs 2 - содержит 27,2 % железа и встречается в виде серебристо-белых бипирамидальных ромбических кристаллов. Плотность равна 7-7,4 г/см³, твёрдость 5-5,5 по шкале Мооса.
  • Миспикель - FeAsS - содержит 34,3 % железа. Встречается в виде белых моноклинных призм с плотностью 5,6-6,2 г/см³ и твёрдостью 5,5-6 по шкале Мооса.
  • Мелантерит - FeSO 4 ·7H 2 O - реже встречается в природе и представляет собой зелёные (или серые из-за примесей) моноклинные кристаллы, обладающие стеклянным блеском, хрупкие. Плотность равна 1,8-1,9 г/см³.
  • Вивианит - Fe 3 (PO 4) 2 ·8H 2 O - встречается в виде сине-серых или зелено-серых моноклинных кристаллов с плотностью 2,95 г/см³ и твёрдостью 1,5-2 по шкале Мооса.

Помимо вышеописанных минералов железа существуют, например:

Основные месторождения

По данным Геологической службы США (оценка 2011 г.), мировые разведанные запасы железной руды составляют порядка 178 млрд тонн. Основные месторождения железа находятся в Бразилии (1 место), Австралии, США, Канаде, Швеции, Венесуэле, Либерии, Украине, Франции, Индии. В России железо добывается на Курской магнитной аномалии (КМА), Кольском полуострове, в Карелии и в Сибири. Значительную роль в последнее время приобретают донные океанские месторождения, в которых железо совместно с марганцем и другими ценными металлами находится в конкрециях.

Получение

В промышленности железо получают из железной руды , в основном из гематита (Fe 2 O 3) и магнетита (FeO·Fe 2 O 3).

Существуют различные способы извлечения железа из руд. Наиболее распространённым является доменный процесс.

Первый этап производства - восстановление железа углеродом в доменной печи при температуре 2000 °C . В доменной печи углерод в виде кокса , железная руда в виде агломерата или окатышей и флюс (например, известняк) подаются сверху, а снизу их встречает поток нагнетаемого горячего воздуха.

В печи углерод в виде кокса окисляется до монооксида углерода . Данный оксид образуется при горении в недостатке кислорода :

В свою очередь, монооксид углерода восстанавливает железо из руды. Чтобы данная реакция шла быстрее, нагретый угарный газ пропускают через оксид железа(III) :

Оксид кальция соединяется с диоксидом кремния, образуя шлак - метасиликат кальция:

Шлак, в отличие от диоксида кремния, плавится в печи. Более лёгкий, чем железо, шлак плавает на поверхности - это свойство позволяет разделять шлак от металла. Шлак затем может использоваться при строительстве и сельском хозяйстве. Расплав железа, полученный в доменной печи , содержит довольно много углерода (чугун). Кроме таких случаев, когда чугун используется непосредственно, он требует дальнейшей переработки.

Излишки углерода и другие примеси (сера , фосфор) удаляют из чугуна окислением в мартеновских печах или в конвертерах. Электрические печи используются и для выплавки легированных сталей.

Кроме доменного процесса, распространён процесс прямого получения железа. В этом случае предварительно измельчённую руду смешивают с особой глиной, формируя окатыши. Окатыши обжигают, и обрабатывают в шахтной печи горячими продуктами конверсии метана , которые содержат водород . Водород легко восстанавливает железо:

,

при этом не происходит загрязнения железа такими примесями как сера и фосфор, которые являются обычными примесями в каменном угле . Железо получается в твёрдом виде, и в дальнейшем переплавляется в электрических печах.

Химически чистое железо получается электролизом растворов его солей .

Физические свойства

Явление полиморфизма чрезвычайно важно для металлургии стали. Именно благодаря α-γ переходам кристаллической решётки происходит термообработка стали . Без этого явления железо как основа стали не получило бы такого широкого применения.

Железо относится к умеренно тугоплавким металлом . В ряду стандартных электродных потенциалов железо стоит до водорода и легко реагирует с разбавленными кислотами. Таким образом, железо относится к металлам средней активности.

Температура плавления железа 1539 °C, температура кипения - 2862 °C.

Химические свойства

Характерные степени окисления

  • Кислота в свободном виде не существует - получены только её соли.

Для железа характерны степени окисления железа - +2 и +3.

Степени окисления +2 соответствует чёрный оксид FeO и зелёный гидроксид Fe(OH) 2 . Они имеют основный характер. В солях Fe(+2) присутствует в виде катиона. Fe(+2) - слабый восстановитель.

Степени окисления +3 соответствуют красно-коричневый оксид Fe 2 O 3 и коричневый гидроксид Fe(OH) 3 . Они носят амфотерный характер, хотя и кислотные, и основные свойства у них выражены слабо. Так, ионы Fe 3+ нацело гидролизуются даже в кислой среде. Fe(OH) 3 растворяется (и то не полностью), только в концентрированных щелочах. Fe 2 O 3 реагирует со щелочами только при сплавлении, давая ферриты (формальные соли кислоты несуществующей в свободном виде кислоты HFeO 2):

Железо (+3) чаще всего проявляет слабые окислительные свойства.

Степени окисления +2 и +3 легко переходят между собой при изменении окислительно-восстановительных условий.

Кроме того, существует оксид Fe 3 O 4 , формальная степень окисления железа в котором +8/3. Однако этот оксид можно также рассматривать как феррит железа (II) Fe +2 (Fe +3 O 2) 2 .

Также существует степень окисления +6. Соответствующего оксида и гидроксида в свободном виде не существует, но получены соли - ферраты (например, K 2 FeO 4). Железо (+6) находится в них в виде аниона. Ферраты являются сильными окислителями.

Свойства простого вещества

При хранении на воздухе при температуре до 200 °C железо постепенно покрывается плотной плёнкой оксида , препятствующего дальнейшему окислению металла. Во влажном воздухе железо покрывается рыхлым слоем ржавчины , который не препятствует доступу кислорода и влаги к металлу и его разрушению. Ржавчина не имеет постоянного химического состава, приближённо её химическую формулу можно записать как Fe 2 O 3 ·xH 2 O.

Соединения железа (II)

Оксид железа(II) FeO обладает основными свойствами, ему отвечает основание Fe(OH) 2 . Соли железа (II) обладают светло-зелёным цветом. При их хранении, особенно во влажном воздухе, они коричневеют за счёт окисления до железа (III). Такой же процесс протекает при хранении водных растворов солей железа(II):

Из солей железа(II) в водных растворах устойчива соль Мора - двойной сульфат аммония и железа(II) (NH 4) 2 Fe(SO 4) 2 ·6Н 2 O.

Реактивом на ионы Fe 2+ в растворе может служить гексацианоферрат(III) калия K 3 (красная кровяная соль). При взаимодействии ионов Fe 2+ и 3− выпадает осадок турнбулевой сини :

Для количественного определения железа (II) в растворе используют фенантролин Phen, образующий с железом (II) красный комплекс FePhen 3 (максимум светопоглощения - 520 нм) в широком диапазоне рН (4-9) .

Соединения железа (III)

Соединения железа(III) в растворах восстанавливаются металлическим железом:

Железо(III) способно образовывать двойные сульфаты с однозарядными катионами типа квасцов , например, KFe(SO 4) 2 - железокалиевые квасцы, (NH 4)Fe(SO 4) 2 - железоаммонийные квасцы и т. д.

Для качественного обнаружения в растворе соединений железа(III) используют качественную реакцию ионов Fe 3+ с тиоцианат-ионами SCN − . При взаимодействии ионов Fe 3+ с анионами SCN − образуется смесь ярко-красных роданидных комплексов железа 2+ , + , Fe(SCN) 3 , - . Состав смеси (а значит, и интенсивность её окраски) зависит от различных факторов, поэтому для точного качественного определения железа этот метод неприменим.

Другим качественным реактивом на ионы Fe 3+ служит гексацианоферрат(II) калия K 4 (жёлтая кровяная соль). При взаимодействии ионов Fe 3+ и 4− выпадает ярко-синий осадок берлинской лазури :

Соединения железа (VI)

Окислительные свойства ферратов используют для обеззараживания воды.

Соединения железа VII и VIII

Имеются сообщения об электрохимическом получении соединений железа(VIII). , , , однако независимых работ, подтверждающих эти результаты, нет.

Применение

Железная руда

Железо - один из самых используемых металлов , на него приходится до 95 % мирового металлургического производства.

  • Железо является основным компонентом сталей и чугунов - важнейших конструкционных материалов.
  • Железо может входить в состав сплавов на основе других металлов - например, никелевых.
  • Магнитная окись железа (магнетит) - важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.
  • Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.
  • Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.
  • Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат .
  • Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве.
  • Железо применяется в качестве анода в железо-никелевых аккумуляторах , железо-воздушных аккумуляторах .
  • Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

Биологическое значение железа

В живых организмах железо является важным микроэлементом, катализирующим процессы обмена кислородом (дыхания). В организме взрослого человека содержится около 3,5 грамма железа (около 0,02 %), из которых 78 % являются главным действующим элементом гемоглобина крови, остальное входит в состав ферментов других клеток, катализируя процессы дыхания в клетках. Недостаток железа проявляется как болезнь организма (хлороз у растений и анемия у животных).

Обычно железо входит в ферменты в виде комплекса, называемого гемом . В частности, этот комплекс присутствует в гемоглобине - важнейшем белке, обеспечивающем транспорт кислорода с кровью ко всем органам человека и животных. И именно он окрашивает кровь в характерный красный цвет.

Комплексы железа, отличные от гема, встречаются, например, в ферменте метан-моноксигеназе, окисляющем метан в метанол , в важном ферменте рибонуклеотид-редуктазе, который участвует в синтезе ДНК .

Неорганические соединения железа встречаются в некоторых бактериях , иногда используется ими для связывания азота воздуха.

В организм животных и человека железо поступает с пищей (наиболее богаты им печень , мясо , яйца , бобовые , хлеб , крупы , свёкла). Интересно, что некогда шпинат ошибочно был внесён в этот список (из-за опечатки в результатах анализа - был потерян «лишний» ноль после запятой).

Избыточная доза железа (200 мг и выше) может оказывать токсическое действие. Передозировка железа угнетает антиоксидантную систему организма, поэтому употреблять препараты железа здоровым людям не рекомендуется.

Примечания

  1. Химическая энциклопедия: в 5 т / Редкол.: Кнунянц И. Л. (гл. ред.). - М .: Советская энциклопедия, 1990. - Т. 2. - С. 140. - 671 с. - 100 000 экз.
  2. Карапетьянц М. Х. , Дракин С. И. Общая и неорганическая химия: Учебник для вузов. - 4-е изд., стер. - М.: Химия, 2000, ISBN 5-7245-1130-4 , с. 529
  3. М. Фасмер. Этимологический словарь русского языка. - Прогресс. - 1986. - Т. 2. - С. 42-43.
  4. Трубачёв О. Н. Славянские этимологии. // Вопросы славянского языкознания, № 2, 1957.
  5. Boryś W. Słownik etymologiczny języka polskiego. - Kraków: Wydawnictwo Literackie. - 2005. - С. 753-754.
  6. Walde A. Lateinisches etymologisches Wörterbuch. - Carl Winter’s Universitätsbuchhandlung. - 1906. - С. 285.
  7. Мейе А. Основные особенности германской группы языков. - УРСС. - 2010. - С. 141.
  8. Matasović R. Etymological Dictionary of Proto-Celtic. - Brill. - 2009. - С. 172.
  9. Mallory, J. P., Adams, D. Q. Encyclopedia of Indo-European Culture. - Fitzroy-Dearborn. - 1997. - P. 314.
  10. «New Measurement of the 60 Fe Half-Life». Physical Review Letters 103 : 72502. DOI :10.1103/PhysRevLett.103.072502 .
  11. G. Audi, O. Bersillon, J. Blachot and A. H. Wapstra (2003). «The NUBASE evaluation of nuclear and decay properties ». Nuclear Physics A 729 : 3–128. DOI :10.1016/j.nuclphysa.2003.11.001 .
  12. Ю. М. Широков, Н. П. Юдин. Ядерная физика. М.: Наука, 1972. Глава Ядерная космофизика .
  13. Р. Рипан, И. Четяну. Неорганическая химия // Химия неметаллов = Chimia metalelor. - Москва: Мир, 1972. - Т. 2. - С. 482-483. - 871 с.
  14. Gold and Precious Metals
  15. Металловедение и термическая обработка стали. Справ. изд. В 3-х т./ Под ред. М. Л. Берштейна, А. Г. Рахштадта. - 4-е изд., перераб. и доп. Т. 2. Основы термической обработки. В 2-х кн. Кн. 1. М.: Металлургия, 1995. 336 с.
  16. T. Takahashi & W.A. Bassett, "High-Pressure Polymorph of Iron ," Science , Vol. 145 #3631, 31 Jul 1964, p 483-486.
  17. Schilt A. Analytical Application of 1,10-phenantroline and Related Compounds. Oxford, Pergamon Press, 1969.
  18. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989. С. 297.
  19. Лурье Ю. Ю. Справочник по аналитической химии. М., Химия, 1989, С. 315.
  20. Брауэр Г. (ред.) Руководство по неорганическому синтезу. т. 5. М., Мир, 1985. С. 1757-1757.
  21. Реми Г. Курс неорганической химии. т. 2. М., Мир, 1966. С. 309.
  22. Киселёв Ю. М., Копелев Н. С., Спицын В. И., Мартыненко Л. И. Восьмивалентное железо // Докл. АН СССР. 1987. Т.292. С.628-631
  23. Перфильев Ю. Д., Копелев Н. С., Киселёв Ю. М., Спицын В. И. Мёссбауэровское исследование восьмивалентного железа // Докл. АН СССР. 1987. T.296. С.1406-1409
  24. Kopelev N.S., Kiselev Yu.M., Perfiliev Yu.D. Mossbauer spectroscopy of the oxocomplexes iron in higher oxidation states // J. Radioanal. Nucl. Chem. 1992. V.157. Р.401-411.
  25. «Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения Российской Федерации» МР 2.3.1.2432-08

Источники (к разделу История)

  • Г. Г. Гиоргадзе. «Текст Анитты» и некоторые вопросы ранней истории хеттов
  • Р. М. Абрамишвили. К вопросу об освоении железа на территории Восточной Грузии, ВГМГ, XXII-В, 1961.
  • Хахутайшвили Д. А. К истории древнеколхской металлургии железа. Вопросы древней истории (Кавказско-ближневосточный сборник, вып. 4). Тбилиси, 1973.
  • Геродот. «История», 1:28.
  • Гомер. «Илиада», «Одиссея».
  • Вергилий. «Энеида», 3:105.
  • Аристотель. «О невероятных слухах», II, 48. ВДИ, 1947, № 2, стр. 327.
  • Ломоносов М. В. Первые основания металлургии.

См. также

  • Категория:Соединения железа

Ссылки

  • Болезни, вызванные недостатком и избытком железа в организме человека

Железо в чистом виде – это пластичный металл серого цвета, легко подвергаемый обработке. И всё же, для человека элемент Fe более практичен в сочетании с углеродом и другими примесями, которые позволяют образовывать металлические сплавы – стали и чугуны. 95% – именно столько всей производимой на планете металлической продукции содержит железо в качестве основного элемента.

Железо: история

Первые железные изделия, изготовленные человеком, датированы учёными IV тыс. до н. э., причем исследования показали, что для их производства использовалось метеоритное железо , для которого характерно 5-30-процентное содержание никеля. Интересно, но пока человечество не освоило добычу Fe путём его переплавки, железо ценилось дороже золота. Объяснялось это тем, что более крепкая и надежная сталь куда больше подходила для изготовления орудий труда и оружия, нежели медь и бронза.

Первый чугун научились получать древние римляне: их печи могли повышать температуру руды до 1400 о С, в то время как чугуну было достаточно 1100-1200 о С. Впоследствии они же получили и чистую сталь, температура плавления которой, как известно, составляет 1535 градуса по Цельсию.

Химические свойства Fe

С чем взаимодействует железо? Железо взаимодействует с кислородом, что сопровождается образованием оксидов; с водой в присутствии кислорода; с серной и соляной кислотами:

  • 3Fe+2O 2 = Fe 3 O 4
  • 4Fe+3O 2 +6H 2 O = 4Fe(OH) 3
  • Fe+H 2 SO 4 = FeSO 4 +H 2
  • Fe+2HCl = FeCl 2 +H 2

Также железо реагирует на щелочи, только если они представляют собой расплавы сильных окислителей. Железо не реагирует с окислителями при обычной температуре, однако всегда начинает вступать в реакцию при её повышении.

Применение железа в строительстве

Применение железа строительной отраслью в наши дни нельзя переоценить, ведь металлоконструкции являются основой абсолютно любого современного строения. В этой сфере Fe используется в составе обычных сталей, литейного чугуна и сварочного железа. Данный элемент находится везде, начиная с ответственных конструкций и заканчивая анкерными болтами и гвоздями.

Возведение строительных конструкций из стали обходится гораздо дешевле, к тому же здесь можно говорить и о более высоких темпах строительства. Это заметно увеличивает использование железа в строительстве, в то время как сама отрасль осваивает применение новых, более эффективных и надежных сплавов на основе Fe.

Использование железа в промышленности

Использование железа и его сплавов – чугуна и стали – это основа современного машино-, станко-, авиа-, приборостроения и изготовления прочей техники. Благодаря цианидам и оксидам Fe функционирует лакокрасочная промышленность, сульфаты железа применяются при водоподготовке. Тяжелая промышленность и вовсе немыслима без использования сплавов на основе Fe+C. Словом, Железо – это незаменимый, но вместе с тем доступный и относительно недорогой металл, который в составе сплавов имеет практически неограниченную сферу применения.


Применение железа в медицине

Известно, что в каждом взрослом человеке содержится до 4 грамм железа. Этот элемент крайне важен для функционирования организма, в частности, для здоровья кровеносной системы (гемоглобин в эритроцитах). Существует множество лекарственных препаратов на основе железа, которые позволяют повышать содержание Fe во избежание развития железодефицитной анемии.

Железо - металл, применение кото-рого в промышленности и быту практически не имеет гра-ниц. Доля железа в мировом производстве металлов состав-ляет около 95 %. Применение его, как и любого другого ма-териала, обусловлено определенными свойствами.

Железо сыграло огромную роль в развитии человеческой цивилизации. Первобытный человек начал использовать же-лезные орудия за несколько тысячелетий до нашей эры. Тог-да единственным источником этого металла были упавшие на Землю метеориты, которые содержали достаточно чистое железо. Это породило у многих народов легенды о небесном происхождении железа.

В середине II тыс. до н.э. в Египте была освоена добыча же-леза из железных руд. Считают, что это положило начало же-лезному веку в истории человечества, который пришел на смену каменному и бронзовому векам. Однако уже 3-4 тыся-челетия назад жители Северного Причерноморья - кимме-рийцы - выплавляли железо из болотной руды.

Железо не утратило своего значения и поныне. Это важ-нейший металл современной техники. Из-за низкой прочнос-ти железо практически не используют в чистом виде. Однако в быту «железными» часто называют стальные или чугунные изделия. Ведь важные конструкционные материалы - стали и чугуны - представляют собой сплавы железа с углеродом. Из них изготавливают самые разнообразные предметы.

Восьмигранный пьедестал памятника князю Владимиру построен из кирпича и облицован чугуном.

Прототипом гигантского сооружения Атомиума в Брюссе-ле стала модель кристаллической решетки же-леза. После реконструкции Атомиум вновь открыт для посе-щений. Оригинальное покрытие каждого шара площадью в 240 м 2 было выполнено из 720 треугольных алюминиевых пластин. Теперь их заменили 48 пластин из нержавеющей стали.

Кроме того, железо может быть компонентом сплавов на основе других металлов, например никелевых. Магнитные сплавы также содержат железо.

На основе железа создают материалы, способные выдер-живать действие высоких и низких температур, вакуума и высоких давлений . Они успешно противостоят агрессивным средам, переменному напряжению, радиоактивному излу-чению и т. п.

Производство железа и его сплавов постоянно растет. Эти материалы универсальны, технологичны, доступны и в мас-се - дешевы. Сырьевая база железа достаточно большая. Уже разведанных запасов железных руд хватит как мини-мум на два столетия. Поэтому железо долго будет оставаться «фундаментом» цивилизации.

В качестве художественного материала железо издавна использовали в Египте, Месопотамии, Индии. Со времен средневековья сохранились многочисленные высокохудо-жественные изделия из железных сплавов. Современные художники также широко применяют железные сплавы. Материал с сайта

Среди множества художественных изделий нельзя оста-вить вне поля зрения «Пальму Мерцалова» - произведение искусства украинских мастеров. Она была выкована Алек-сеем Мерцаловым на Юзовском металлургическом заводе в 1886 году. Ее признали достойной Гран-при Всероссийской промышленно-художественной выставки в Нижнем Новго-роде. В 1900 году «Пальма Мерцалова» в составе экспозиции Юзовского завода получила наивысшую награду на Всемир-ной выставке в Париже.

И в XXI в. сложно найти отрасль, где бы не использовали железо. Его значение не уменьшилось с переходом многих функций металла к синтетическим материалам, созданным химической промышленностью.

Цели урока:

  • сформировать представление о физических и химических свойствах железа в зависимости от проявляемой им степени окисления и природы окислителя;
  • развивать теоретическое мышление учащихся и их умения прогнозировать свойства вещества , опираясь на знания о его строении;
  • развивать понятийное мышление таких операций, как анализ, сравнение, обобщение, систематизация;
  • развивать такие качества мышления, как объективность, лаконизм и ясность, самоконтроль и активность.

Задачи урока:

  • актуализировать знания учащихся по теме: “Строение атома”;
  • организовать коллективную работу учащихся от постановки учебной задачи до конечного результата (составить опорную схему к уроку);
  • обобщить материал по теме: “Металлы” и рассмотреть свойства железа и его применение;
  • организовать самостоятельную исследовательскую работу в парах по изучению химических свойств железа;
  • организовать взаимоконтроль учащихся на уроке.

Тип урока: изучение нового материала.

Реактивы и оборудование:

  • железо (порошок, пластина, скрепка),
  • сера,
  • соляная кислота,
  • сульфат меди (II),
  • кристаллическая решетка железа,
  • плакаты для игры,
  • магнит,
  • подборка иллюстраций по теме,
  • пробирки,
  • спиртовка,
  • спички,
  • ложка для сжигания горючих веществ,
  • географические карты.

Структура урока

  1. Вводная часть.
  2. Изучение нового материала.
  3. Сообщение домашнего задания.
  4. Закрепление изученного материала.

Ход урока

1. Вводная часть

Организационный момент.

Проверка наличия учащихся.

Сообщение темы урока. Запись темы на доске и в тетрадях учащихся.

2. Изучение нового материала

– Как вы думаете, как будет звучать тема нашего сегодняшнего урока?

1. Появление железа в человеческой цивилизации положило начало железному веку.

Откуда же древние люди брали железо в то время, когда еще не умели добывать его из руды? Железо в переводе с шумерского языка – это металл, “капнувший с неба, небесный”. Первое железо, с которым столкнулось человечество, было железом из метеоритов. Впервые доказал, что “железные камни падают с неба”, в 1775 г. русский ученый П.С. Палас, который привез в Петербург глыбу самородного железного метеорита весом 600 кг. Самым крупным железным метеоритом является найденный в 1920 г. в Юго-Западной Африке метеорит “Гоба” весом около 60 т. Вспомним гробницу Тутанхамона: золото, золото. Великолепная работа восхищает, блеск слепит глаза. Но вот что пишет К.Керрам в книге “Боги, гробницы, ученые” о маленьком железном амулете Тутанхамона: “Амулет относится к числу наиболее ранних изделий Египта, и …в гробнице, наполненной чуть ли не до отказа золотом, именно эта скромная находка имела наибольшую с точки зрения истории культуры ценность”. Всего несколько железных изделий было найдено в гробнице фараона, среди них железный амулет бога Гора, небольшой кинжальчик с железным клинком и золотой рукояткой, маленькая железная скамеечка “Урс”.

Ученые предполагают, что именно страны Малой Азии, где проживали племена хеттов, были местом возникновения черной металлургии. В Европу железо пришло из Малой Азии уже в I тыс. до н.э.; так в Европе начался железный век.

Знаменитую булатную сталь (или булат) делали на Востоке еще во времена Аристотеля (IV в. до н.э.). Но технология ее изготовления держалась в секрете много веков.

Мне приснилась иная печаль
Про седую дамасскую сталь.
Я увидел, как сталь закалялась,
Как из юных рабов одного
Выбирали, кормили его,
Чтобы плоть его сил набиралась.
Выжидали положенный срок,
А потом раскаленный клинок
В мускулистую плоть погружали,
Вынимали готовый клинок.
Крепче стали, не видел Восток,
Крепче стали и горше печали.

Поскольку булат – это сталь с очень большой твердостью и упругостью, изготовленные из нее изделия обладают способностью не тупиться, будучи остро заточенными. Раскрыл секрет булата русский металлург П.П. Аносов. Он очень медленно охлаждал раскаленную сталь в специальном растворе технического масла, подогретого до определенной температуры; в процессе охлаждения сталь ковалась.

(Демонстрация рисунков.)

Железо – серебристо-серый металл


Железо – серебристо-серый металл

Эти гвозди сделаны из железа

Сталь используется в автомобилестроении

Сталь используется для изготовления медицинских инструментов

Сталь используется для изготовления локомотивов


Все металлы подвержены коррозии



Все металлы подвержены коррозии

2. Положение железа в ПСХЭМ.

Выясняем положение железа в ПСХЭМ, заряд ядра и распределение электронов в атоме.

3. Физические свойства железа.

– Какие физические свойства железа вы знаете?

Железо – это серебристо-белый металл с температурой плавления 1539 о С. Очень пластичный, поэтому легко обрабатывается, куется, прокатывается, штампуется. Железо обладает способностью намагничиваться и размагничиваться, поэтому применяется в качестве сердечников электромагнитов в различных электрических машинах и аппаратах. Ему можно придать большую прочность и твердость методами термического и механического воздействия, например, с помощью закалки и прокатки.

Различают химически чистое и технически чистое железо. Технически чистое железо, по сути, представляет собой низкоуглеродистую сталь, оно содержит 0,02 -0,04% углерода, а кислорода, серы, азота и фосфора – еще меньше. Химически чистое железо содержит менее 0,01% примесей. Химически чистое железо – серебристо-серый, блестящий, по внешнему виду очень похожий на платину металл. Химически чистое железо устойчиво к коррозии (вспомним, что такое коррозия? Демонстрация коррозионного гвоздя) и хорошо сопротивляется действию кислот. Однако ничтожные доли примесей лишают его этих драгоценный свойств.

4. Химические свойства железа.

Исходя из знаний о химических свойствах металлов, как вы думаете, какими химическими свойствами будет обладать железо?

Демонстрация опытов.

  • Взаимодействие железа с серой.

Практическая работа.

  • Взаимодействие железа с соляной кислотой.
  • Взаимодействие железа с сульфатом меди (II).

5. Применение железа.

Беседа по вопросам:

– Как выдумаете, каково распространение железа в природе?

Железо – один из самых распространенных элементов в природе. В земной коре его массовая доля составляет 5,1%, по этому показателю оно уступает только кислороду, кремнию и алюминию. Много железа находится и в небесных телах, что установлено по данным спектрального анализа. В образцах лунного грунта, которые доставила автоматическая станция “Луна”, обнаружено железо в неокисленном состоянии.

Железные руды довольно широко распространены на Земле. Названия гор на Урале говорят сами за себя: Высокая, Магнитная, Железная. Агрохимики в почвах находят соединения железа.

– В виде, каких соединений железо встречается в природе?

Железо входит в состав большинства горных пород. Для получения железа используют железные руды с содержанием железа 30-70% и более. Основными железными рудами являются: магнетит – Fe 3 O 4 содержит 72% железа, месторождения встречаются на Южном Урале, Курской магнитной аномалии; гематит – Fe 2 O 3 содержит до 65% железа, такие месторождения встречаются в Криворожском районе; лимонит – Fe 2 O 3* nH 2 O содержит до 60% железа, месторождения встречаются в Крыму; пирит – FeS 2 содержит примерно 47% железа, месторождения встречаются на Урале. (Работа с контурными картами).

– Какова роль железа в жизни человека и растений?

Биохимики открыли важную роль железа в жизни растений, животных и человека. Входя в состав чрезвычайно сложно построенного органического соединения, называемого гемоглобином, железо обусловливает красную окраску этого вещества, от которого в свою очередь, зависит цвет крови человека и животных. В организме взрослого человека содержится 3 г чистого железа, 75% которого входит в состав гемоглобина. Основная роль гемоглобина – перенос кислорода из легких к тканям, а в обратном направлении – CO 2 .

Железо необходимо и растениям. Оно входит в состав цитоплазмы, участвует в процессе фотосинтеза. Растения, выращенные на субстрате, не содержащем железа, имеют белые листья. Маленькая добавка железа к субстрату – и они приобретают зеленый цвет. Больше того, стоит белый лист смазать раствором соли, содержащей железо, и вскоре смазанное место зеленеет.

Так от одной и той же причины – наличия железа в соках и тканях – весело зеленеют листья растений и ярко румянятся щеки человека.

Примерно 90% используемых человечеством металлов – это сплавы на основе железа. Железа выплавляется в мире очень много, примерно в 50 раз больше, чем алюминия, не говоря уже о прочих металлах. Сплавы на основе железа универсальны, технологичны, доступны, дешевы. Железу еще долго быть фундаментом цивилизации.

3. Сообщение домашнего материала

14, упр. № 6, 8, 9 (по рабочей тетради к учебнику О.С Габриелян “Химия 9”, 2003 г.).

4. Закрепление изученного материала

  1. Используя опорную схему, записанную на доске, сделайте вывод: что же представляет собой железо и каковы его свойства?
  2. Графический диктант (заранее приготовить листочки с начерченной прямой, разделенной на 8 отрезков и пронумерованной соответственно вопросам диктанта. Отметить шалашиком “^” на отрезке номер положения, которое считается верным).

Вариант 1.

  1. Железо – это активный щелочной металл.
  2. Железо легко куется.
  3. Железо входит в состав сплава бронзы.
  4. На внешнем энергетическом уровне атома железа 2 электрона.
  5. Железо взаимодействует с разбавленными кислотами.
  6. С галогенами образует галогениды со степенью окисления +2.
  7. Железо не взаимодействует с кислородом.
  8. Железо можно получить путем электролиза расплава его соли.
1 2 3 4 5 6 7 8

Вариант 2.

  1. Железо – это металл серебристо-белого цвета.
  2. Железо не обладает способностью намагничиваться.
  3. Атомы железа проявляют окислительные свойства.
  4. На внешнем энергетическом уровне атома железа 1 электрон.
  5. Железо вытесняет медь из растворов ее солей.
  6. С галогенами образует соединения со степенью окисления +3.
  7. С раствором серной кислоты образует сульфат железа (III).
  8. Железо не подвергается коррозии.
1 2 3 4 5 6 7 8

После выполнения задания учащиеся меняются своими работами и проверяют их (ответы к работам вывешены на доске, или показать через проектор).

Критерии отметки:

  • “5” – 0 ошибок,
  • “4” – 1-2 ошибки,
  • “3” – 3-4 ошибки,
  • “2” – 5 и больше ошибок.

Используемая литература

  1. Габриелян О.С. Химия 9 класс. – М.: Дрофа, 2001.
  2. Габриелян О.С. Книга для учителя. – М.: Дрофа, 2002.
  3. Габриелян О.С. Химия 9 класс. Рабочая тетрадь. – М.: Дрофа, 2003.
  4. Индустрия образования. Сборник статей. Выпуск 3. – М.: МГИУ, 2002.
  5. Малышкина В. Занимательная химия. – Санкт-Петербург, “Тригон”, 2001.
  6. Программно-методические материалы. Химия 8-11 классы. – М.: Дрофа, 2001.
  7. Степин Б.Д., Аликберова Л.Ю. Книга по химии для домашнего чтения. – М.: Химия, 1995.
  8. Я иду на урок Химии. Книга для учителя. – М.: “Первое сентября”, 2000.

Приложения

Знаете ли вы, что?

Железо – один из важнейших элементов жизни. Кровь содержит железо, и именно оно определяет цвет крови, а также ее основное свойство – способность связывать и отдавать кислород. Такой способностью обладает комплексное соединение – гем – составная часть молекулы гемоглобина. Кроме гемоглобина железо в нашем организме есть еще в миоглобине – белке, запасающем кислород в мышцах. Есть также железосодержащие ферменты.

Близ г. Дели в Индии стоит железная колонна без малейшего пятнышка ржавчины, хотя ее возраст почти 2800 лет. Это знаменитая Кутубская колонна высотой около семи метров и массой 6.5 т. Надпись на колонне говорит о том, что она была поставлена в IX в. До н. э. Ржавление железа – образование метагидроксида железа – связано с взаимодействием его с влагой и кислородом воздуха.

Однако эта реакция при отсутствии в железе различных примесей, и прежде всего углерода, кремния и серы, не протекает. Колонна была изготовлена из очень чистого металла: железа в колонне оказалось 99,72%. Этим и объясняется ее долговечность и коррозионная устойчивость.

В 1934 г. в "Горном журнале" появилась статья "Улучшение железа и стали посредством...ржавления в земле". Способ превращения железа в сталь через ржавление в земле известен людям с глубокой древности . Например, черкесы на Кавказе закапывали полосовое железо в землю, а откопав его через 10-15 лет, выковывали из него свои сабли, которые могли перерубить даже ружейный ствол, щит, кости врага.

Гематит

Гематит, или красный железняк – основная руда главного металла современности – железа. Содержание железа достигает в нем 70%. Гематит известен с давних пор. В Вавилоне и Древнем Египте он использовался в украшениях, для изготовления печатей, наряду с халцедоном служил излюбленным материалом в качестве резного камня. У Александра Македонского был перстень с вставкой из гематита, который, как он полагал, делал его неуязвимым в бою. В древности и в Средние века гематит слыл лекарством, останавливающим кровь. Порошок из этого минерала издревле использовали для золотых и серебряных изделий.

Название минерала происходит от греческого дета – кровь, что связано с вишневым или сургучно-красным цветом порошка этого минерала.

Важной особенностью минерала является способность стойко хранить цвет и передавать его другим минералам, в которые попадает хотя бы небольшая примесь гематита. Розовый цвет гранитных колонн Исаакиевского собора – это цвет полевых шпатов, которые в свою очередь окрашены тонкораспыленным гематитом. Живописные узоры яшмы, используемой при отделке станций столичного метро, оранжевые и розовые сердолики Крыма, кораллово-красные прослойки сильвина и карналлита в соляных толщах – все обязаны своим цветом гематиту.

Издавна из гематита делали красную краску. Все известные фрески, выполненные 15-20 тыс. лет назад, – замечательные бизоны Альтамирской пещеры и мамонты из знаменитой Капской пещеры – выполнены и коричневыми оксидами и гидроксидами железа.

Магнетит

Магнетит, или магнитный железняк – минерал, содержащий 72% железа. Это самая богатая железная руда. Замечательное в этом минерале его природный магнетизм – свойство, благодаря которому он был открыт.

Как сообщал римский ученый Плиний, магнетит назван в честь греческого пастуха Магнеса. Магнес пас стадо возле холма над р. Хинду в Фессалии. Неожиданно посох с железным наконечником и подбитые гвоздями сандалии притянула к себе гора, сложенная сплошным серым камнем. Минерал магнетит дал в свою очередь название магниту, магнитному полю и всему загадочному явлению магнетизма, которое пристально изучается со времен Аристотеля и по сей день.

Магнитные свойства этого минерала и сегодня используются, прежде всего для поиска месторождений. Именно так были открыты уникальные месторождения железа на площади Курской магнитной аномалии (КМА). Минерал тяжелый: образец магнетита размером с яблоко весит 1,5 кг.

В древности магнетит наделяли всевозможными лечебными свойствами и способностью творить чудеса. Его использовали для извлечения металла при ранениях, а Иван Грозный среди своих сокровищ наравне с другими камнями хранил его непримечательные кристаллы.

Пирит – минерал, подобный огню

Пирит – один из тех минералов, увидев который хочется воскликнуть: "Неужели это так и было?" Трудно поверить, что высший класс огранки и полировки, поражающий нас в рукотворных изделиях, в кристаллах пирита – щедрый дар природы.

Пирит получил свое название от греческого слова "пирос" – огонь, что связано с его свойством искрить при ударе стальными предметами. Этот красивый минерал поражает золотистым цветом, ярким блеском на почти всегда четких гранях. Благодаря своим свойствам пирит известен с глубокой древности, а во время эпидемий золотой лихорадки пиритовые блестки в кварцевой жиле вскружили не одну горячую голову. Да и сейчас начинающие любители камня нередко принимают пирит за золото.

Пирит – минерал вездесущий: он образуется из магмы, из паров и растворов, и даже из осадков, каждый раз в специфических формах и сочетаниях. Известен случай, когда за несколько десятилетий в пирит превратилось тело упавшего в шахту рудокопа. Железа в пирите немало – 46,5%, но извлекать его дорого и невыгодно.