Спектр периодической последовательности. Спектр последовательности прямоугольных импульсов

2. Спектр периодической последовательности прямоугольных импульсов

Рассмотрим периодическую последовательность прямоугольных импульсов, изображенную на рис. 5. Данный сигнал характеризуется длительностью импульса, его амплитудой и периодом. По вертикальной оси откладывается напряжение.

Рис.5. Периодическая последовательность прямоугольных импульсов

Начало отсчета выберем в середине импульса. Тогда сигнал разлагается только по косинусам. Частоты гармоник равныn/T , где n - любое целое число. Амплитуды гармоник согласно (1.2.) будут равны :

так как V(t) =Е при , где - длительности импульса и V(t) =0 при , то

Эту формулу удобно записать в виде:

(2.1.)

Формула (1.5.) дает зависимость амплитуды n-ой гармоники от периода и длительности в виде непрерывной функции (функция ). Эту функцию называют огибающей спектра. Следует иметь ввиду, что физический смысл она имеет только на частотах, где существуют соответствующие гармоники. На рис. 6 приведен спектр периодической последовательности прямоугольных импульсов.


Рис.6. Спектр периодической последовательности

прямоугольных импульсов.

При построении огибающей имеем ввиду, что - является

Осцилирующей функцией частоты, а знаменатель монотонно возрастает с ростом частоты. Поэтому получается квазиосцилирующая функция с постепенным убыванием. При частоте стремящейся к нулю, к нулю стремятся одновременно и числитель и знаменатель, их отношение стремится к единице (первый классический предел). Нулевые значения огибающей возникают в точках где т. е.

Где m – целое число (кроме m

Периодическая последовательность прямоугольных видеоимпульсов является модулирующей функцией для формирования периодической последовательности прямоугольных радиоимпульсов (ПППВИ), которые являются зондирующими сигналами для обнаружения и измерения координат движущихся целей. Поэтому, по спектру модулирующей функции (ПППВИ), можно относительно просто и быстро и определить спектр зондирующего сигнала (ПППРИ). При отражении зондирующего сигнала от движущейся цели изменяются частоты спектра гармоник несущего колебания (эффект Доплера). Вследствие чего, можно выделить полезный сигнал, отраженный от движущейся цели, на фоне мешающих (помеховых) колебаний, отраженных от неподвижных объектов (местные предметы) или малоподвижных объектов (метеообразования, стаи птиц и др.).

ПППВИ (рис. 1.42) представляет собой совокупность одиночных прямоугольных видеоимпульсов, следующих друг за другом через равные промежутки времени. Аналитическое выражение сигнала.

где – амплитуда импульсов; – длительность импульсов; – период следования импульсов; – частота следования импульсов, ; – скважность.

Для вычисления спектрального состава периодической последовательности импульсов применяют ряд Фурье. При известных спектрах одиночных импульсов, образующих периодическую последовательность, можно воспользоваться связью между спектральной плотностью импульсов и комплексными амплитудами ряда:

Для одиночного прямоугольного видеоимпульса спектральная плотность описывается формулой

Воспользовавшись связью между спектральной плотностью одиночного импульса и комплексными амплитудами ряда, находим

где = 0; ± 1; ± 2; ...

Амплитудно-частотный спектр (рис. 1.43) будет представлен совокупностью составляющих:

при этом положительным значениям соответствуют нулевые начальные фазы, а отрицательным – начальные фазы, равные .

Таким образом, аналитическое выражение ПППВИ будет равно

Из анализа графиков, приведенных на рисунке 1.43 следует:

· Спектр ПППВИ дискретный состоящий из отдельных гармоник с частотой .

· Огибающая АЧС изменяется по закону .

· Максимальное значение огибающей при равно , значение постоянной составляющей .

· Начальные фазы гармоник в пределах нечетных лепестков равны 0, в пределах четных .

· Количество гармоник в пределах каждого лепестка равно .

· Ширина спектра сигнала на уровне 90% энергии сигнала

· База сигнала , поэтому сигнал является простым.

Если изменять длительность импульсов , либо частоту их повторения F (период ), то параметры спектра и его АЧС будет изменяться.


На рисунке 1.43 представлен пример изменения сигнала и его АЧС при увеличении длительности импульса в два раза.

Периодические последовательности прямоугольных видеоимпульсов и их АЧС параметрами , T ,. и , T , изображены на рисунке 1.44.

Из анализа приведенных графиков следует:

1. Для ПППВИ с длительностью импульса :

· Скважность q =4, следовательно, в пределах каждого лепестка сосредоточено 3 гармоники;

· Частота k-ой гармоники ;

· Ширина спектра сигнала на уровне 90% энергии ;

· Постоянная составляющая равна

2. Для ПППВИ с длительностью импульса :

· Скважность q= 2, следовательно, в пределах каждого лепестка находится 1 гармоника;

· Частота k-ой гармоники осталось неизменной ;

· Ширина спектра сигнала на уровне 90% его энергии уменьшилась в 2 раза ;

· Постоянная составляющая увеличилась в 2 раза .

Таким образом, можно сделать вывод, что при увеличении длительности импульса, происходит “сжатие” АЧС вдоль оси ординат (уменьшается ширина спектра сигнала), при этом увеличиваются амплитуды спектральных составляющих. Частоты гармоник не изменяются.

На рисунке 1.44. представлен пример изменения сигнала и его АЧС при увеличении периода следования в 4 раза (уменьшение частоты повторения в 4 раза).

c) ширина спектра сигнала на уровне 90% его энергии не изменилась;

d) постоянная составляющая уменьшилась в 4 раза.

Таким образом, можно сделать вывод, что при увеличении периода следования (уменьшении частоты повторения происходит “сжатие ”) АЧС вдоль оси частот (уменьшаются амплитуды гармоник с увеличением их количества в пределах каждого лепестка). Ширина спектра сигнала при этом не изменяется. Дальнейшее уменьшение частоты повторения (увеличения периода следования) приведет (при ) к уменьшению амплитуд гармоник до бесконечно малых величин. При этом сигнал превратиться в одиночный, соответственно спектр станет сплошным.

Рассмотрим периодическую последовательность импульсов прямоугольной формы с периодом Т, длительностью импульсов t u и максимальным значением . Найдем разложение в ряд такого сигнала, выбрав начало координат, как показано на рис. 15. При этом функция симметрична относительно оси ординат, т.е. все коэффициенты синусоидальных составляющих =0, и нужно рассчитать только коэффициенты .

постоянная составляющая

(2.28)

Постоянная составляющая – это среднее значение за период, т.е. это площадь импульса , деленная на весь период, т.е. , т.е. то же, что получилось и при строгом формальном вычислении (2.28).

Вспомним, что частота первой гармоники ¦ 1 = , где Т – период прямоугольного сигнала. Расстояние между гармониками D¦=¦ 1 . Если номер гармоники n окажется таким, что аргумент синуса , то амплитуда этой гармоники первый раз обращается в нуль. Это условие выполняется при . Номер гармоники, при котором амплитуда ее обращается в ноль первый раз, называют «первым нулем» и обозначают его буквой N, подчеркивая особые свойства этой гармоники:

С другой стороны, скважность S импульсов – это отношение периода Т к длительности импульсов t u , т.е. . Следовательно «первый нуль» численно равен скважности импульса N=S . Поскольку синус обращается в ноль при всех значениях аргумента, кратных p, то и амплитуды всех гармоник с номерами, кратными номеру «первого нуля», тоже обращаются в ноль. То есть при , где k – любое целое число. Так, например, из (2.22) и (2.23) следует, что спектр прямоугольных импульсов со скважностью 2 состоит только из нечетных гармоник. Поскольку S=2 , то и N=2 , т.е. амплитуда второй гармоники первый раз обращается в ноль – это «первый нуль». Но тогда и амплитуды всех остальных гармоник с номерами, кратными 2, т.е. все четные тоже должны обращаться в ноль. При скважности S=3 нулевые амплитуды будут у 3, 6, 9, 12, ….гармоник.

С увеличением скважности «первый нуль» смещается в область гармоник с большими номерами и, следовательно, скорость убывания амплитуд гармоник уменьшается. Простой расчет амплитуды первой гармоники при U m =100В для скважности S =2, U m 1 =63,7B, при S =5, U m 1 =37,4B и при S =10, U m 1 =19,7B, т.е. с ростом скважности амплитуда первой гармоники резко уменьшается. Если же найти отношение амплитуды, например, 5-й гармоники U m 5 к амплитуде первой гармоники U m 1 , то для S =2, U m 5 /U m 1 =0,2, а для S =10, U m 5 /U m 1 = 0,9, т.е. скорость затухания высших гармоник с ростом скважности уменьшается.

Таким образом, с ростом скважности спектр последовательности прямоугольных импульсов становится более равномерным.

Литература: [Л.1], с 40

В качестве примера приведем разложение в ряд Фурье периодической последовательности прямоугольных импульсов с амплитудой , длительностью и периодом следования , симметричной относительно нуля, т.е.

, (2.10)

Здесь

Разложение такого сигнала в ряд Фурье дает

, (2.11)

где – скважность.

Для упрощения записи можно ввести обозначение

, (2.12)

Тогда (2.11) запишется следующим образом

, (2.13)

На рис. 2.3 изображена последовательность прямоугольных импульсов. Спектр последовательности, как впрочем, и любого другого периодического сигнала, носит дискретный (линейчатый) характер.

Огибающая спектра (рис. 2.3, б) пропорциональна . Расстояние по оси частот между двумя соседними составляющими спектра равно , а между двумя нулевыми значениями (ширина лепестка спектра) – . Число гармонических составляющих в пределах одного лепестка, включая правое по рисунку нулевое значение, составляет , где знак означает округление до ближайшего целого числа, меньшего (если скважность – дробное число), или (при целочисленном значении скважности). При увеличении периода основная частота уменьшается, спектральные составляющие на диаграмме сближаются, амплитуды гармоник также уменьшаются. При этом форма огибающей сохраняется.

При решении практических задач спектрального анализа вместо угловых частот используют циклические частоты , измеряемые в Герцах. Очевидно, расстояние между соседними гармониками на диаграмме составит , а ширина одного лепестка спектра – . Эти значения представлены на диаграмме в круглых скобках.

В практической радиотехнике в большинстве случаев вместо спектрального представления (рис. 2.3, б) используют спектральные диаграммы амплитудного и фазового спектров. Амплитудный спектр последовательности прямоугольных импульсов представлен на рис. 2.3, в.

Очевидно, огибающая амплитудного спектра пропорциональна .

Что же касается фазового спектра (рис. 2.3, г), то полагают, что начальные фазы гармонических составляющих изменяются скачком на величину при изменение знака огибающей sinc kπ/q . Начальные фазы гармоник первого лепестка, полагаются равными нулю. Тогда начальные фазы гармоник второго лепестка составят φ = -π , третьего лепестка φ = -2π и т.д.

Рассмотрим еще одно представление сигнала рядом Фурье. Для этого воспользуемся формулой Эйлера

.

В соответствии с этой формулой k-ю составляющую (2.9) разложения сигнала в ряд Фурье можно представить следующим образом

; . (2.15)

Здесь величины и являются комплексными и представляют собой комплексные амплитуды составляющих спектра. Тогда ряд

Фурье (2.8) с учетом (2.14) примет следующую форму

, (2.16)

, (2.17)

Нетрудно убедиться в том, что разложение (2.16) проводится по базисным функциям , которые также являются ортогональными на интервале , т.е.

Выражение (2.16) представляет собой комплексную форму ряда Фурье, которая распространяется на отрицательные частоты. Величины и , где означает комплексную сопряженную с величину, называются комплексными амплитудами спектра. Т.к. является комплексной величиной, из (2.15) следует, что

и .

Тогда совокупность составляет амплитудный, а совокупность – фазовый спектр сигнала .

На рис. 2.4 представлена спектральная диаграмма спектра рассмотренной выше последовательности прямоугольных импульсов, представленного комплексным рядом Фурье

Спектр также носит линейчатый характер, но в отличие от ранее рассмотренных спектров определяется как в области положительных, так и в области отрицательных частот. Поскольку является чётной функцией аргумента , спектральная диаграмма симметрична относительно нуля.

Исходя из (2.15) можно установить соответствие между и коэффициентами и разложения (2.3). Так как

и ,

то в результате получим

. (2.18)

Выражения (2.5) и (2.18) позволяют найти значения при практических расчетах.

Дадим геометрическую интерпретацию комплексной формы ряда Фурье. Выделим k-тую составляющую спектра сигнала. В комплексной форме k-я составляющая описывается формулой

где и определятся выражениями (2.15).

В комплексной плоскости каждое из слагаемых в (2.19) изображается в виде векторов длиной , повернутых на угол и относительно вещественной оси и вращающихся в противоположных направлениях с частотой (рис. 2.5).

Очевидно, сумма этих векторов дает вектор, расположенный на вещественной оси, длина которого составляет . Но этот вектор соответствует гармонической составляющей

Что касается проекций векторов на мнимую ось, то эти проекции имеют равную длину, но противоположные направления и в сумме дают ноль. А это значит, что сигналы, представленные в комплексной форме (2.16) в действительности являются вещественными сигналами. Иными словами, комплексная форма ряда Фурье является математической абстракцией, весьма удобной при решении целого ряда задач спектрального анализа. Поэтому, иногда спектр, определяемый тригонометрическим рядом Фурье, называют физическим спектром , а комплексной формой ряда Фурье – математическим спектром .

И в заключение рассмотрим вопрос распределения энергии и мощности в спектре периодического сигнала. Для этого воспользуемся равенством Парсеваля (1.42). При разложении сигнала в тригонометрический ряд Фурье выражение (1.42) принимает вид

.

Энергия постоянной составляющей

,

а энергия k-той гармоники

.

Тогда энергия сигнала

. (2.20)

Т.к. средняя мощность сигнала

,

то с учетом (2.18)

. (2.21)

При разложение сигнала в комплексный ряд Фурье выражение (1.42) имеет вид

,

где
- энергия k-той гармоники.

Энергия сигнала в этом случае

,

а его средняя мощность

.

Из приведенных выражений следует, что энергия или средняя мощность k-той спектральной составляющей математического спектра вдвое меньше энергии или мощности соответствующей спектральной составляющей физического спектра. Это обусловлено тем, что физического спектра распределяется поровну между и математического спектра.

-τ и /2
τ и /2
Т
t
U 0
S(t)

Задание №1, группа РИ – 210701

С выхода источника сообщений поступают сигналы, несущие информацию, а также тактовые, используемые для синхронизации работы передатчика и приемника системы передачи. Информационные сигналы имеют вид непериодической, а тактовые- периодическойпоследовательности импульсов.

Для правильной оценки возможности передачи таких импульсов по каналам связи определим их спектральный состав. Периодический сигнал в виде импульсов любой формы можно разложить в ряд Фурье согласно (7).

Для передачи по воздушным и кабельным линиям связи применяются сигналы различной формы. Выбор той или иной формы зависит от характера передаваемых сообщений, частотного спектра сигналов, частотных ивременных параметров сигналов. Большое применение в технике передачи дискретных сообщений получили сигналы, близкие по форме к прямоугольным импульсам.

Вычислим спектр, т.е. совокупность амплитуд постоянной и

гармонических составляющих периодических прямоугольных импульсов (рисунок 4,а) длительностью и периодом. Поскольку сигнал является четной функцией времени, то в выражении (3) все четные гармонические составляющие обращаются в нуль (=0), а нечетные составляющие принимают значения:

(10)

Постоянная составляющая равна

(11)

Для сигнала 1:1 (телеграфные точки) рисунок 4а:

,
. (12)

Модули амплитуд спектральных составляющих последовательности прямоугольных импульсов с периодом
приведены на рис. 4,б. По оси абсцисс отложены основная частота повторения импульсов
() и частоты нечетных гармонических составляющих
,
и т.д. Огибающая спектра изменяется по закону.

При увеличении периода ,по сравнению с длительностью импульса,число гармонических составляющих в спектральном составе периодического сигнала увеличиваются. Например, для сигнала с периодом (рисунок 4,в)получаем, что постоянная составляющая равнаи

В полосе частот от нуля до частотырасполагается пять гармоническихсоставляющих (рисунок 4,г), в то время как прилишь одна.

При дальнейшем увеличении периода повторения импульсов число гармонических составляющих становится все больше и больше. В предельном случае когда
сигнал становится непериодической функцией времени, число его гармонических составляющих в полосе частот от нуля до частотыувеличивается до бесконечности; расположены они будут набесконечноблизких расстояниях по частоте;спектр непериодического сигналастановится непрерывным.

Рисунок 4

2.4 Спектр одиночного импульса

Задан одиночный видеоимпульс (рисунок 5):

Рисунок 5

Метод рядов Фурье допускает глубокое и плодотворное обобщение, позволяющее получать спектральные характеристики непериодических сигналов. Для этого мысленно дополним одиночный импульс такими же импульсами, периодически следующими через некоторый интервал времени , и получим изученную ранее периодическую последовательность:

Представим одиночный импульс как сумму периодических импульсов с большим периодом .

, (14)

где - целые числа.

Для периодического колебания

. (15)

Для того, чтобы вернуться к одиночному импульсу, устремим к бесконечности период повторения: . При этом, очевидно:

, (16)

Обозначим

. (17)

Величиной называется спектральная характеристика (функция) одиночного импульса (прямое преобразование Фурье). Она зависит только от временного описания импульсаи в общем виде является комплексной:

, (18) где
; (19)

; (20)

,

где
- модуль спектральной функции (амплитудно-частотная характеристика импульса);

- фазовый угол, фазо-частотная характеристика импульса.

Найдем для одиночного импульса по формуле (8), используя спектральную функцию:

.

Если , получим:


. (21)

Полученное выражение называется обратным преобразованием Фурье.

Интеграл Фурье определяет импульс в виде бесконечной суммы бесконечно малых гармонических составляющих, расположенных на всех частотах.

На этом основании говорят о непрерывном (сплошном) спектре, которым обладает одиночный импульс.

Полная энергия импульса (энергия, выделяемая на активном сопротивлении Ом) равна

(22)

Изменяя порядок интегрирования, получим

.

Внутренний интеграл есть спектральная функция импульса , взятая при аргументе -, т.е. представляет собой комплексно сопряженную свеличину:

Следовательно

Квадрат модуля (произведение двух сопряженных комплексных чисел равно квадрату модуля).

В этом случае условно говорят, что спектр импульса является двусторонним, т.е. размещается в полосе частот от до.

Приведенное соотношение (23), устанавливающее связь между энергией импульса (на сопротивлении 1 Ом) и модулем его спектральной функции известно под названием равенство Парсеваля.

Оно утверждает, что энергия, заключенная в импульсе , равна сумме энергий всех составляющих его спектра. Равенство Парсеваля характеризует важное свойство сигналов. Если некоторая избирательная система пропускает только часть спектра сигнала, ослабляя другие её составляющие, то это означает, что часть энергии сигнала теряется.

Так как квадрат модуля является четной функцией переменной интегрирования , то удвоив значение интеграла можно ввести интегрирование в пределах от 0 до:

. (24)

При этом говорят, что спектр импульса размещается в полосе частот от 0 до и называется односторонним.

Подынтегральная величина в (23) называется энергетическим спектром (спектральная плотность энергии) импульса

Она характеризует распределение энергии по частоте, и её значение на частоте равно энергии импульса, приходящейся на полосу частот, равной 1 Гц. Следовательно, энергия импульса есть результат интегрирования энергетического спектра сигнала по всему диапазону частот отдо.Иначе говоря, энергия равна площади, заключённой между кривой, изображающей энергетический спектр сигнала и осью абсцисс.

Для оценки распределения энергии по спектру пользуются относительной интегральной функцией распределения энергии (энергетической характеристикой)

, (25)

где
- энергия импульса в заданной полосе частот от 0 до, которая характеризует долю энергии импульса, сосредоточенную в интервале частот от 0 до.

Для одиночных импульсов различной формы выполняются следующие закономерности: