Презентация к уроку "логарифмические неравенства". Методы решения логарифмических неравенств Логарифмические неравенства презентация

Предварительный просмотр:

https://accounts.google.com


Подписи к слайдам:

Логарифмы Решение логарифмических уравнений и неравенств

Понятие логарифма При любом и степень с произвольным действительным показателем определена и равна некоторому положительному действительному числу: Показатель 𝑝 степени называется логарифмом этой степени с основанием.

Логарифмом положительного числа по положительному и не равному основанию: называется показатель степени, при возведении в который числа получается. или, тогда

СВОЙСТВА ЛОГАРИФМОВ 1) Если то. Если то. 2) Если то. Если то.

Во всех равенствах. 3) ; 4) ; 5) ; 6) ; 7) ; 8) ; 9) ; ;

10) , ; 11) , ; 12) , если; 13) , если – чётное число, если – нечётное число.

Десятичный логарифм и натуральный логарифм Десятичным логарифмом называется логарифм, если его основание равно 10 . Обозначение десятичного логарифма: . Натуральным логарифмом называется логарифм, если его основание равно числу. Обозначение натурального логарифма: .

Примеры с логарифмами Найдите значение выражения: № 1. ; № 2. ; № 3. ; № 4. ; № 5. ; № 6. ; № 7. ; № 8. ; № 9. ;

№ 10. ; № 11. ; № 12. ; № 13. ; № 14. ; № 15. ; № 16. ; № 17. ; № 18. ; № 19. ; № 20. ; № 21. ;

№ 22. ; № 23. ; № 24. ; № 25. ; № 26. Найдите значение выражения, если; № 27. Найдите значение выражения, если; № 28. Найдите значение выражения, если.

Решение примеров с логарифмами № 1. . Ответ. . № 2. . Ответ. . № 3. . Ответ. . № 4. . Ответ. . № 5. . Ответ. .

№ 6. . Ответ. . № 7. . Ответ. . № 8. . Ответ. . № 9. . Ответ. . № 10. . Ответ. .

№ 11. Ответ. . № 12. . Ответ. . № 13. . Ответ. № 14. . Ответ. .

№ 15. . Ответ. № 16. . Ответ. № 17. . Ответ. . № 18. . Ответ. . № 19 . . Ответ. .

№ 20. . Ответ. . № 21. . Ответ. . № 22. . Ответ. . № 23. . № 24. . Ответ. . № 25. . Ответ. .

№ 26. . Е сли, то. Ответ. . № 27. . Е сли, то. Ответ. . № 28. . Е сли. Ответ. .

Простейшие логарифмические уравнения Простейшим логарифмическим уравнением называется уравнение вида: ; , г де и – действительные числа, - выражения, содержащие.

Методы решения простейших логарифмических уравнений 1. По определению логарифма. A) Если, то уравнение равносильно уравнению. B) Уравнение равносильно системе

2. Метод потенцирования. A) Если то уравнение равносильно системе B) Уравнение равносильно системе

Решение простейших логарифмических уравнений № 1. Решите уравнение. Решение. ; ; ; ; . Ответ. . № 2. Решите уравнение. Решение. ; ; ; . Ответ. .

№ 3. Решите уравнение. Решение. . Ответ. .

№ 4. Решите уравнение. Решение. . Ответ. .

Методы решения логарифмических уравнений 1. Метод потенцирования. 2. Функционально-графический метод. 3. Метод разложения на множители. 4. Метод замены переменной. 5. Метод логарифмирования.

Особенности решения логарифмических уравнений Применять простейшие свойства логарифмов. Распределять слагаемые, содержащие неизвестные, при применении простейших свойств логарифмов, таким образом, чтобы не возникали логарифмы отношений. Применять цепочки логарифмов: цепочка раскрывается на основании определения логарифма. Применение свойств логарифмической функции.

№ 1 . Решите уравнение. Решение. Преобразуем данное уравнение, воспользовавшись свойствами логарифма. Данное уравнение равносильно системе:

Решим первое уравнение системы: . Учитывая, что и, получаем. Ответ. .

№ 2. Решите уравнение. Решение. . Воспользуемся определением логарифма, получаем. Выполним проверку, подставляя найденные значения переменной в квадратный трёхчлен, получаем, следовательно, значения являются корнями данного уравнения. Ответ. .

№ 3. Решите уравнение. Решение. Находим область определения уравнения: . Преобразовываем данное уравнение

Учитывая область определения уравнения, получаем. Ответ. .

№ 4. Решите уравнение. Решение. Область определения уравнения: . Преобразуем данное уравнение: . Решаем методом замены переменной. Пусть, тогда уравнение принимает вид:

Учитывая, что, получаем уравнение Обратная замена: Ответ.

№ 5. Решите уравнение. Решение. Можно угадать корень данного уравнения: . Проверяем: ; ; . Верное равенство, следовательно, является корнем данного уравнения. А теперь: СЛОЖНО ЛОГАРИФМИРУЙ! Прологарифмируем обе части уравнения по основанию. Получаем равносильное уравнение: .

Получили квадратное уравнение, у которого известен один корень. По теореме Виета находим сумму корней: , следовательно, находим второй корень: . Ответ. .

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Логарифмические неравенства Логарифмическими неравенствами называют неравенства вида, где - выражения, содержащие. Если в неравенствах неизвестное находится под знаком логарифма, то неравенства относят к логарифмическим неравенствам.

Свойства логарифмов, выраженные неравенствами 1. Сравнение логарифмов: А) Если, то; Б) Если, то. 2. Сравнение логарифма с числом: А) Если, то; Б) Если, то.

Свойства монотонности логарифмов 1) Если, то и. 2) Если, то и 3) Если, то. 4) Если, то 5) Если, то и

6) Если, то и 7) Если основание логарифма переменная величина, то

Методы решения логарифмических неравенств 1. Метод потенцирования. 2 . Применение простейших свойств логарифмов. 3 . Метод разложения на множители. 4. Метод замены переменной. 5. Применение свойств логарифмической функции.

Решение логарифмических неравенств № 1. Решите неравенство. Решение. 1) Находим область определения данного неравенства. 2) Преобразуем данное неравенство, следовательно, .

3) Учитывая, что, получаем. Ответ. . № 2. Решите неравенство. Решение. 1) Находим область определения данного неравенства

Из первых двух неравенств: . Прикидываем. Рассмотрим неравенство. Должно выполняться условие: . Если, то, тогда.

2) Преобразуем данное неравенство, следовательно, Решаем уравнение. Сумма коэффициентов, следовательно один из корней. Разделим четырёхчлен на двучлен, получаем.

Тогда, следовательно, решая методом интервалов данное неравенство, определяем. Учитывая, что, находим значения неизвестной величины. Ответ. .

№ 3. Решите неравенство. Решение. 1) Преобразуем. 2) Данное неравенство принимает вид: и

Ответ. . № 4 . Решите неравенство. Решение. 1) Преобразовываем данное уравнение. 2) Неравенство равносильно системе неравенств:

3) Решаем неравенство. 4) Рассматриваем систему и решаем её . 5) Решаем неравенство. а) Если, то, следовательно,

Решение неравенства. б) Если, то, следовательно, . Учитывая, что рассматривали, получаем решение неравенства. 6) Получаем. Ответ. .

№ 5 . Решите неравенство. Решение. 1) Преобразовываем данное неравенство 2) Неравенство равносильно системе неравенств:

Ответ. . № 6 . Решите неравенство. Решение. 1) Преобразовываем данное неравенство. 2) Учитывая преобразования неравенства, данное неравенство равносильно системе неравенств:

№ 7 . Решите неравенство. Решение. 1) Находим область определения данного неравенства: .

2) Преобразовываем данное неравенство. 3) Применяем метод замены переменной. Пусть, тогда неравенство можно представить в виде: . 4) Выполним обратную замену:

5) Решаем неравенство.

6) Решаем неравенство

7) Получаем систему неравенств. Ответ. .

Тема моей методической работы в 2013 – 2014 учебном году, а позже в 2015 – 2016 учебном году «Логарифмы. Решение логарифмических уравнений и неравенств». Данная работа представлена в виде презентации к урокам.

ИСПОЛЬЗОВАННЫЕ РЕСУРСЫ И ЛИТЕРАТУРА 1. Алгебра и начала математического анализа. 10 11 классы. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (базовый уровень) / А.Г. Мордкович. М.: Мнемозина, 2012. 2. Алгебра и начала анализа. 10 11 классы. Модульный триактив -курс / А.Р. Рязановский, С.А. Шестаков, И.В. Ященко. М.: Издательство «Национальное образование», 2014. 3. ЕГЭ. Математика: типовые экзаменационные варианты: 36 вариантов / под ред. И.В.Ященко. М.: Издательство «Национальное образование», 2015.

4. ЕГЭ 2015. Математика. 30 вариантов типовых тестовых заданий и 800 заданий части 2 / И.Р. Высоцкий, П.И. Захаров, В.С. Панфёров, С.Е. Посицельский, А.В. Семёнов, М.А. Семёнова, И.Н. Сергеев, В.А. Смирнов, С.А. Шестаков, Д.Э.Шноль, И.В. Ященко; под ред. И.В. Ященко. М.: Издательство «Экзамен», издательство МЦНМО, 2015. 5. ЕГЭ-2016: Математика: 30 вариантов экзаменационных работ для подготовки к единому государственному экзамену: профильный уровень / под ред. И.В. Ященко. М.: АСТ: Астрель, 2016. 6. mathege.ru . Открытый банк заданий по математике.


Разделы: Математика

Класс: 11

(Приложение , слайд 1)

Цель урока:

  • организовать деятельность обучающихся по восприятию, осмыслению, первичному запоминанию и закреплению знаний и способов действий;
  • повторить свойства логарифмов;
  • обеспечить в ходе урока усвоение нового материала по применению теоремы о логарифмических неравенствах при основании a логарифма для случаев: а)0 < a < 1, б) a > 1;
  • создать условие для формирования интереса к математике через ознакомление с ролью математики в развитии человеческой цивилизации, в научно-техническом прогрессе.

Структура урока:

1. Организация начала урока.
2. Проверка домашнего задания.
3. Повторение.
4. Актуализация ведущих знаний и способов действий.
5. Организация усвоения новых знаний и способов действий.
6. Первичная проверка понимания, осмысления и закрепления.
7. Домашнее задание.
8. Рефлексия. Итог урока.

ХОД УРОКА

1. Организационный момент

2. Проверка домашнего задания (Приложение , слайд 2)

3. Повторение (Приложение , слайд 4)

4. Актуализация ведущих знаний и способов действий

– На одном из предыдущих уроков у нас возникла ситуация, при которой мы не смогли решить показательное уравнение, что привело к введению нового математического понятия. Мы ввели определение логарифма, изучили свойства и рассмотрели график логарифмической функции. На предыдущих уроках решали логарифмические уравнения с помощью теоремы и свойств логарифмов. Применяя свойства логарифмической функции, мы смогли решить простейшие неравенства. Но описание свойств окружающего нас мира не ограничивается простейшими неравенствами. Как же поступить в том случае, когда мы получим неравенства, с которыми не справиться с имеющимся объемом знаний? Ответ на этот вопрос мы получим на этом и последующих уроках.

5. Организация усвоения новых знаний и способов действий (Приложение , слайды 5-12).

1) Тема, цель урока.

2) (Приложение , слайд 5)

Определение логарифмического неравенства: логарифмическими неравенствами называют неравенства вида и неравенства, сводящиеся к этому виду.

3) (Приложение , слайд 6)

Для решения неравенства проведем следующие рассуждения:

Получаем 2 случая: a > 1 и 0 < a < 1.
Если a >1, то неравенство log a t > 0 имеет место тогда и только тогда, когда t > 1, значит , т.е. f (x ) > g (x ) (учли, что g (x ) > 0).
Если 0 < a < 1, то неравенство log a t > 0, имеет место тогда и только тогда, когда 0 < t < 1, значит , т.е. f (x ) < g (x ) (учли, что g (x ) > 0 и f (x ) > 0).

(Приложение , слайд 7)

Получаем теорему: если f (x ) > 0 и g (x ) > 0), то логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству того же смысла f (x ) > g (x ) при a > 1
логарифмическое неравенство log a f (x ) > log a g (x ) равносильно неравенству противоположного смысла f (x ) < g (x ), если 0 < a < 1.

4) На практике при решении неравенства переходят к равносильной системе неравенств (Приложение , слайд 8):

5) Пример 1 (Приложение , слайд 9)

Из третьего неравенства следует, что первое неравенство лишнее.

Из третьего неравенства следует, что второе неравенство лишнее.

Пример 2 (Приложение , слайд 10)

Если выполняется второе неравенство, то выполняется и первое (если A > 16, то тем более А > 0). Значит, 16 + 4x x 2 > 16, x 2 – 4 < 0, x (x – 4) < 0,

Алгебра 11 класс «Логарифмические уравнения и неравенства»

Урок составила учитель математики

ОСШГ № 2 г. Актобе

Власова Наталья Николаевна


А. Франс

«Чтобы переварить знания, надо поглощать их

с аппетитом»


Цели урока :

  • Систематизация знаний и умений учащихся по применению свойств логарифмической функции при решении задач
  • Развитие вычислительных навыков и логического мышления
  • Воспитание умения работать в группе, создание положительной мотивации учения

  • Свойства логарифмов и логарифмической функции, применяемые при решении логарифмических уравнений.
  • Проверка полученных корней при решении логарифмических уравнений
  • Свойства логарифмической функции применяемые при решении логарифмических неравенств


Заполнить пропуски:


Решить неравенства:


Найти ошибку


Решите уравнение:

Проверка:






Контроль знаний и умений учащихся по теме: «Логарифмические уравнения и неравенства» с помощью теста


1 вариант

1.Найдите произведение корней уравнения: log π (x 2 + 0,1) =0

1) - 1,21; 2) - 0,9; 3) 0,81; 4) 1,21.

2. Укажите промежуток, которому принадлежат корни уравнения log 0,5 (x – 9) = 1 + log 0,5 5 1) (11; 13); 2) (9; 11); 3) (-12; -10); 4) [ -10; -9 ].

3. Укажите промежуток, которому принадлежит корень уравнения log 4 (4 – х) + log 4 x = 1 1) (-3; -1); 2) (0; 2); 3) [ 2; 3 ]; 4) [ 4; 8 ].

4. Найдите сумму корней уравнения log √3 x 2 = log √3 (9x – 20) 1) - 13; 2) - 5; 3) 5; 4) 9.

5. Укажите промежуток, которому принадлежит корень уравнения log 1/3 (2х – 3) 5 = 15 1) [ -3; 2); 2) [ 2; 5); 3) [ 5; 8); 4) [ 8; 11).


= 1 1) (-∞; 0,5 ]; 2) (-∞; 2 ]; 3) [ 2; + ∞); 4) [ 0,5; + ∞). 8. Решите неравенство log π (3х + 2) 9. Решите неравенство log 1/9 (6 – 0,3х) -1 1) (-10; +∞); 2) (-∞; -10); 3) (-10; 20); 4) (-0,1; 20). 10. Найдите число целых отрицательных решений неравенства lg (х + 5)

6. . Укажите промежуток, которому принадлежит корень уравнения lg (х + 7) – lg (х + 5) = 1 1) (-∞; -7); 2) (-7; -5); 3) (-5; -3); 4) (0; +∞).

7. Решите неравенство log 3 (4 – 2х) = 1 1) (-∞; 0,5 ]; 2) (-∞; 2 ]; 3) [ 2; + ∞); 4) [ 0,5; + ∞).

8. Решите неравенство log π (3х + 2)

9. Решите неравенство log 1/9 (6 – 0,3х) -1 1) (-10; +∞); 2) (-∞; -10); 3) (-10; 20); 4) (-0,1; 20).

10. Найдите число целых отрицательных решений неравенства lg (х + 5)

2 вариант

1.Найдите произведение корней уравнения: lg (x 2 + 1) = 1 1) - 99; 2) - 9; 3) 33; 4) -33.

2. Укажите промежуток, которому принадлежит корень уравнения log 4 (x – 5) = log 25 5 1) (-4; -2); 2) (6; 8); 3) (3; 6); 4) [ -8; -6 ].

3. Укажите промежуток, которому принадлежит корень уравнения lоg 0,4 (5 – 2х) - lоg 0,4 2 = 1 1) (-∞; -2); 2) [ -2; 1 ]; 3) [ 1; 2 ]; 4) (2; +∞).

4. Найдите сумму корней уравнения lg (4x – 3) = 2 lg x 1) - 2; 2) 4; 3) -4; 4) 2.

5. Укажите промежуток, которому принадлежит корень уравнения log 2 (64х²) = 6 1) [ 5; 7]; 2) [ 9; 11 ]; 3) (3; 5); 4) [ 1; 3 ].


-1 1) (-∞; 2,5); 2) (-10; 2,5); 3) (2,5; + ∞); 4) (-10; + ∞). 8. Решите неравенство log 1,25 (0,8х + 0,4) 9. Решите неравенство log 10/3 (1 – 1,4х) 10. Найдите число целых решений нер-ва lоg 0,5 (х - 2) = - 2 1) 5; 2) 4; 3) бесконечно много; 4) ни одного. " width="640"

6 . . Укажите промежуток, которому принадлежит корень уравнения lоg 2 (х - 1)³ = 6 log 2 3 1) [ 0; 5); 2) [ 5; 8); 3) [ 8; 11); 4) [ 11; 14).

7. Решите неравенство log 0,8 (0,25 – 0,1х) -1 1) (-∞; 2,5); 2) (-10; 2,5); 3) (2,5; + ∞); 4) (-10; + ∞).

8. Решите неравенство log 1,25 (0,8х + 0,4)

9. Решите неравенство log 10/3 (1 – 1,4х)

10. Найдите число целых решений нер-ва lоg 0,5 (х - 2) = - 2 1) 5; 2) 4; 3) бесконечно много; 4) ни одного.


Ключ

2 вариант


  • 1. п.28 , решить уравнения № 134,136.
  • 2. Решить неравенства № 218, 220.
  • 3.Подготовиться к контрольной работе
краткое содержание других презентаций

«Правила дифференцирования» - Свойства производных? Что значит функция дифференцируема в точке x ? Вопросы: Что называется производной функции f(x) в точке x ? Как называется операция нахождения производной? Каким может быть число h в отношении? Тип урока: урок повторения и обобщения полученных знаний. Урок по алгебре и началам анализа (11 класс) Правила дифференцирования. Домашнее задание.

«Решение логарифмических неравенств» - Логарифмические неравенства. Алгебра 11 класс. Решите неравенство.

«Применение определённого интеграла» - Объем тела вращения. §6. Опр. Список литературы. Гл. 2. Различные подходы теории интеграла в учебных пособиях для школьников. §1. Подходы к построению теории интеграла: Вычисление длины кривой. §2. Методы интегрирования. §3. Цель: Нахождение статических моментов и центра тяжести плоской фигуры. §8. Интегральная сумма. §4. Гл. 1. Неопределенные и определенные интегралы. §1.

«Иррациональные уравнения» - На контроль. №419 (в,г),№418(в,г),№420(в,г) 3.Устная работа на повторение 4.Тест. Проверка д/з. Д/З. Основные этапы урока. Оценки за урок. Урок по алгебре в 11 классе. Развитие навыка самоконтроля, умений работать тестами. Типология урока: Урок типовых задач. 1.Сообщение темы, цели и задач урока. 2.Проверка д/з.

«Уравнения третьей степени» - Х3 + b = ax (3). 2006-2007 учебный год. Цель работы: Выявить способы решения уравнения третьей степени. (2). Предмет исследования: способы решения уравнений третьей степени. «Великое искусство». Тарталья отказывается. 12 февраля Кардано повторяет свою просьбу. Исследовательская работа.

«Показательные и логарифмические неравенства» - 1.4. Решение сложных показательных неравенств. © Хомутова Лариса Юрьевна. Решение: Показательные и логарифмические неравенства. Государственное Образовательное Учреждение Лицей №1523 ЮАО г.Москва. 2. Логарифмические неравенства 2.1. Решение простейших логарифмических неравенств. Рассмотрим решение неравенства. Лекции по алгебре и началам анализа 11 класс.

«Задания на неравенства» - Решите неравенство. Решение. Решить неравенство. Задание. Банк заданий по математике. 48 прототипов задачи. Правила. Преобразование выражений. Задачи. Решение приведённого квадратного уравнения. Неравенства. Алгоритм решения квадратного неравенства. Подсказка. Решаем квадратное уравнение. Решаем неравенства.

«Показательные неравенства» - Знак неравенства. Решение простейших показательных неравенств. Решение неравенства. Что нужно учесть при решении простейших показательных неравенств? Неравенство, содержащее неизвестную в показателе степени, называется показательным неравенством. Что нужно учесть при решении показательных неравенств?

«Свойства числовых неравенств» - Если n- нечетное число, то для любых чисел a и b из неравенства а>b следует неравенство а >b. Скорость автомобиля в 2 раза больше скорости автобуса. Укажите меньшее из чисел?, 0,7, 8/ 7, 0,8 А)3/4 Б) 0,7 В) 8/7 Г) 0,8. Свойство 1 Если а>b и b>с, то а>с Свойство 2 Если а>b, то а+с>b+с Свойство 3 Если а>b и m>0, то аm>bm; Если а>b и m<0, то аm

«Примеры логарифмических уравнений и неравенств» - Выражения. Открытие логарифмов. Использование монотонности функций. Идея логарифма. Методы решения логарифмических неравенств. Правило знаков. Пример. Логарифмические уравнения и неравенства. Логарифм. Формулы. Потеря решений. Логарифм степени положительного числа. Использование свойств логарифма. Логарифмические уравнения.

«Решение систем неравенств» - Повторение. Рассмотрены примеры решения систем линейных неравенств. Интервалы. Закрепление. Полуинтервалы. Числовые промежутки. Учащиеся научились показывать множество решений систем линейных неравенств на координатной прямой. Рассмотрим примеры решения задач. Математический диктант. Отрезки. Запишите числовой промежуток, служащий множеством решений неравенства.

«Неравенства с двумя переменными» - Для решения неравенств с двумя переменными используется графический метод. Для проверки возмем точку средней области (3; 0). Неравенство с двумя переменными чаще всего имеет бесконечное множество решений. Решения неравенств с двумя переменными. Геометрической моделью решений неравенства является средняя область.

Всего в теме 38 презентаций