Полярная система координат: основные понятия и примеры. Декартова система координат: основные понятия и примеры

Определение положения точки в пространстве

Итак, положение какой-либо точки в пространстве может быть определено только по отношению к каким-либо другим точкам. Та точка, относительно которой рассматривается положение других точек, называется точкой отсчете . Мы так же применим и другое наименование точки отсчета – точка наблюдения . Обычно с точкой отсчета (или с точкой наблюдения) связывают какую-либо систему координат , которую и называют системой отсчета. В выбранной системе отсчета положение КАЖДОЙ точки определяется ТРЕМЯ координатами.

Правая декартова (или прямоугольная) система координат

Эта система координат представляет собой три взаимно перпендикулярных направленных прямых, называемых так же осями координат , пересекающихся в одной точке (начале координат). Точка начала координат обычно обозначается буквой О.

Оси координат носят названия:

1. Ось абсцисс – обозначается как OX;

2. Ось ординат – обозначается как OY;

3. Ось аппликат – обозначается как OZ


Теперь объясним, почему эта система координат называется правой. Давайте посмотрим на плоскость XOY с положительного направления оси OZ, например из точки А, как это показано на рисунке.

Предположим, что мы начинаем поворачивать ось OX вокруг точки О. Так вот – правая система координат имеет такое свойство, что, если смотреть на плоскость XOY из какой-либо точки положительной полуоси OZ (у нас – это точка А), то, при повороте оси OX на 90 против часовой стрелки, её положительное направление совпадет с положительным направлением оси OY.

Такое решение было принято в научном мире, нам же остается принимать это так, как оно есть.


Итак, после того, как мы определились с системой отсчета (в нашем случае – правой декартовой системой координат), положение любой точки описывается через значения её координат или другими словами – через величины проекций этой точки на оси координат.

Записывается это так: A(x, y, z), где x, y, z – и есть координаты точки А.

Прямоугольную систему координат можно представить себе, как линии пересечения трех взаимно перпендикулярных плоскостей.

Следует заметить, что ориентировать прямоугольную систему координат в пространстве можно как угодно, при этом надо выполнить только одно условие – начало координат должно совпадать с центром отсчета (или точкой наблюдения).


Сферическая система координат

Положение точки в пространстве можно описать и другим способом. Предположим, что мы выбрали область пространства, в котором располагается точка отсчета О (или точка наблюдения), и еще нам известно расстояние от точки отсчета до некоторой точки А. Соединим эти две точки прямой ОА. Эта прямая называется радиус-вектором и обозначается, как r . Все точки, имеющие одно и тоже значение радиус-вектора, лежат на сфере, центр которой находится в точке отсчета (или точке наблюдения), а радиус этой сферы равен, соответственно радиус-вектору.

Таким образом, нам становится очевидным, что знание величины радиус-вектора не дает нам однозначного ответа о положении интересующей нас точки. Нужны еще ДВЕ координаты, ведь для однозначного определения местоположения точки количество координат должно равняться ТРЕМ.

Далее мы поступим следующим образом – построим две взаимно перпендикулярные плоскости, которые, естественно, дадут линию пересечения, и эта линия будет бесконечной, потому как и сами плоскости ничем не ограничены. Зададим на этой линии точку и обозначим ее, ну например, как точка О1. А теперь совместим эту точку О1 с центром сферы – точкой О и посмотрим, что получается?


А получается очень интересная картина:

· Как одна, так и другая плоскости будут центральными плоскостями.

· Пересечение этих плоскостей с поверхностью сферы обозначат большие круги

· Один из этих кругов – произвольно, мы назовем ЭКВАТОРОМ , тогда другой круг будет называться ГЛАВНЫМ МЕРИДИАНОМ.

· Линия пересечения двух плоскостей однозначно определит направление ЛИНИИ ГЛАВНОГО МЕРИДИАНА.


Точки пересечения линии главного меридиана с поверхностью сферы обозначим, как М1 и М2

Через центр сферы точку О в плоскости главного меридиана проведем прямую, перпендикулярную линии главного меридиана. Эта прямая носит название ПОЛЯРНАЯ ОСЬ .

Полярная ось пересечет поверхность сферы в двух точках, которые называются ПОЛЮСАМИ СФЕРЫ. Обозначим эти точки, как Р1 и Р2.

Определение координат точки в пространстве

Теперь рассмотрим процесс определения координат точки в пространстве, а так же дадим наименования этим координатам. Для полноты картины, при определении положения точки, укажем основные направления, от которых производится отсчет координат, а так же положительное направление при отсчете.

1. Задаем положение в пространстве точки отсчета (или точки наблюдения). Обозначим эту точку буквой О.

2. Строим сферу, радиус которой равен длине радиус-вектора точки А. (Радиус-вектор точки А – это расстояние между точками О и А). Центр сферы располагается в точке отсчета О.


3. Задаем положение в пространстве плоскости ЭКВАТОРА, а соответственно плоскости ГЛАВНОГО МЕРИДИАНА. Следует напомнить, что эти плоскости взаимно перпендикулярны и являются центральными.

4. Пересечение этих плоскостей с поверхностью сферы определяет нам положение круга экватора, круга главного меридиана, а так же направление линии главного меридиана и полярной оси.

5. Определяем положение полюсов полярной оси и полюсов линии главного меридиана. (Полюса полярной оси – точки пересечение полярной оси с поверхностью сферы. Полюса линии главного меридиана – это точки пересечения линии главного меридиана с поверхностью сферы).


6. Через точку А и полярную ось строим плоскость, которую назовем плоскостью меридиана точки А. При пересечении этой плоскости с поверхностью сферы получится большой круг, который мы назовем МЕРИДИАНОМ точки А.

7. Меридиан точки А пересечет круг ЭКВАТОРА в некоторой точке, которую мы обозначим, как Е1

8. Положение точки Е1 на экваториальном круге определяется длиной дуги, заключенной между точками М1 и Е1. Отсчет ведется ПРОТИВ часовой стрелки. Дуга экваториального круга, заключенная между точками М1 и Е1 называется ДОЛГОТОЙ точки А. Долгота обозначается буквой .

Подведем промежуточный итог. На данный момент нам известны ДВЕ из ТРЕХ координат, описывающих положение точки А в пространстве – это радиус-вектор (r) и долгота (). Теперь мы будем определять третью координату. Эта координата определяется положением точки А на ее меридиане. Но вот положение начальной точки, от которой происходит отсчет, однозначно не определено: мы можем начинать отсчет как от полюса сферы (точка Р1), так и от точки Е1, то есть от точки пересечения линий меридиана точки А и экватора (или другими словами – от линии экватора).


В первом случае, положение точки А на меридиане называется ПОЛЯРНЫМ РАССТОЯНИЕМ (обозначается как р ) и определяется длиной дуги, заключенной между точкой Р1 (или точкой полюса сферы) и точкой А. Отсчет ведется вдоль линии меридиана от точки Р1 к точке А.

Во втором случае, когда отсчет ведется от линии экватора, положение точки А на линии меридиана называется ШИРОТОЙ (обозначается как  и определяется длиной дуги, заключенной между точкой Е1 и точкой А.

Теперь мы можем окончательно сказать, что положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги полярного расстояния (р)

В этом случае координаты точки А запишутся следующим образом: А(r, , p)

Если пользоваться иной системой отсчета, то положение точки А в сферической системе координат определяется через:

· длину радиуса сферы (r),

· длину дуги долготы (),

· длину дуги широты ()

В этом случае координаты точки А запишутся следующим образом: А(r, , )

Способы измерения дуг

Возникает вопрос – как же нам измерить эти дуги? Самый простой и естественный способ – это провести непосредственное измерение длин дуг гибкой линейкой, и это возможно, если размеры сферы сравнимы с размерами человека. Но как поступить, если это условие не выполнимо?

В этом случае мы прибегнем к измерению ОТНОСИТЕЛЬНОЙ длины дуги. За эталон же мы примем длину окружности, частью которой является интересующая нас дуга. Как это можно сделать?

Форма и размеры земли. системы координат. Высоты.

2.1. Форма и размеры Земли

Изучение формы и размеров Земли включает решение двух задач. Это - установление некоторой сглаженной, обобщенной, теоретической фигуры Земли и определение отклонений от нее фактической физической поверхности.

Учитывая, что поверхность океанов и морей составляет 71% поверхности Земли, а поверхность суши - только 29%, за теоретическую фигуру Земли принято тело, ограниченное поверхностью океанов в их спокойном состоянии, продолженной и под материками, и называемое геоидом .

Поверхность, в каждой своей точке перпендикулярная к отвесной линии (направлению силы тяжести), называется уровенной поверхностью . Из множества уpовенных поверхностей одна совпадает с поверхностью геоида.

Из-за неравномерности распределения масс в земной коре геоид имеет неправильную геометрическую форму, и его поверхность нельзя выразить математически, что необходимо для решения геодезических задач. При решении геодезических задач геоид заменяют близкими к нему геометрически правильными поверхностями.

Так, для приближенных вычислений Землю принимают за шар с радиусом 6371 км.

Ближе к форме геоида подходит эллипсоид – фигура, получаемая вращением эллипса (рис. 2.1) вокруг его малой оси. Размеры земного эллипсоида характеризуют следующими основными параметрами: a - большая полуось, b - малая полуось, a - полярное сжатие и e – первый эксцентриситет меридианного эллипса, где и .

Различают общеземной эллипсоид и референц-эллипсоид.

Центр общеземного эллипсоида помещают в центре масс Земли, ось вращения совмещают со средней осью вращения Земли, а размеры принимают такие, чтобы обеспечить наибольшую близость поверхности эллипсоида к поверхности геоида. Общеземной эллипсоид используют при решении глобальных геодезических задач, и в частности, при обработке спутниковых измерений. В настоящее время широко пользуются двумя общеземными эллипсоидами: ПЗ-90 (Параметры Земли 1990 г, Россия) и WGS-84 (Мировая геодезическая система 1984 г, США).

Референц-эллипсоид – эллипсоид, принятый для геодезических работ в конкретной стране. С референц-эллипсоидом связана принятая в стране система координат. Параметры референц-эллипсоида подбираются под условием наилучшей аппроксимации данной части поверхности Земли. При этом совмещения центров эллипсоида и Земли не добиваются.

В России с 1946 г. в качестве референц-эллипсоида используется эллипсоид Красовского с параметрами: а = 6 378 245 м, a = 1/ 298,3.

2.2. Системы координат, применяемые в геодезии

Для определения положения точек в геодезии применяют пространственные прямоугольные, геодезические и плоские прямоугольные координаты.

Пространственные прямоугольные координаты . Начало системы координат расположено в центре O земного эллипсоида (рис. 2.2).

Ось Z направлена по оси вращения эллипсоида к северу. Ось Х лежит в пересечении плоскости экватора с начальным - гринвичским меридианом. Ось Y направлена перпендикулярно осям Z и X на восток.

Геодезические координаты . Геодезическими координатами точки являются ее широта, долгота и высота (рис. 2.2).

Геодезической широтой точки М называется угол В , образованный нормалью к поверхности эллипсоида, проходящей через данную точку, и плоскостью экватора.

Широта отсчитывается от экватора к северу и югу от 0° до 90° и называется северной или южной. Северную широту считают положительной, а южную - отрицательной.

Плоскости сечения эллипсоида, проходящие через ось OZ , называются геодезическими меридианами .

Геодезической долготой точки М называется двугранный угол L , образованный плоскостями начального (гринвичского) геодезического меридиана и геодезического меридиана данной точки.

Долготы отсчитывают от начального меридиана в пределах от 0° до 360° на восток, или от 0° до 180° на восток (положительные) и от 0° до 180° на запад (отрицательные).

Геодезической высотой точки М является ее высота Н над поверхностью земного эллипсоида.

Геодезические координаты с пространственными прямоугольными координатами связаны формулами

X = (N + H ) cosB cosL ,

Y = (N+H ) cosB sinL ,

Z = [(1 - e 2 ) N+H ] sinB ,

где e - первый эксцентриситет меридианного эллипса и N - радиус кривизны первого вертикала. При этом N=a/ (1 - e 2 sin 2 B ) 1/2 .

Геодезические и пространственные прямоугольные координаты точек определяют с помощью спутниковых измерений, а также путем их привязки геодезическими измерениями к точкам с известными координатами.

Отметим, что наряду с геодезическими существуют еще астрономические широта и долгота. Астрономическая широта j это - угол, составленный отвесной линией в данной точке с плоскостью экватора. Астрономическая долгота l – угол между плоскостями Гринвичского меридиана и проходящего через отвесную линию в данной точке астрономического меридиана. Астрономические координаты определяют на местности из астрономических наблюдений.

Астрономические координаты отличаются от геодезических потому, что направления отвесных линий не совпадают с направлениями нормалей к поверхности эллипсоида. Угол между направлением нормали к поверхности эллипсоида и отвесной линией в данной точке земной поверхности называется уклонением отвесной линии .

Обобщением геодезических и астрономических координат является термин – географические координаты .

Плоские прямоугольные координаты . Для решения задач инженерной геодезии от пространственных и геодезических координат переходят к более простым – плоским координатам, позволяющим изображать местность на плоскости и определять положение точек двумя координатами х и у .

Поскольку выпуклую поверхность Земли изобразить на плоскости без искажений нельзя, введение плоских координат возможно только на ограниченных участках, где искажения так малы, что ими можно пренебречь. В России принята система прямоугольных координат, основой которой является равноугольная поперечно–цилиндрическая проекция Гаусса. Поверхность эллипсоида изображается на плоскости по частям, называемым зонами. Зоны представляют собой сферические двуугольники, ограниченные меридианами, и простирающиеся от северного полюса до южного (рис. 2.3). Размер зоны по долготе равен 6°. Центральный меридиан каждой зоны называется осевым. Нумерация зон идет от Гринвича к востоку.

Долгота осевого меридиана зоны с номером N равна:

l 0 = 6°× N - 3° .

Осевой меридиан зоны и экватор изображаются на плоскости прямыми линиями (рис. 2.4). Осевой меридиан принимают за ось абсцисс x , а экватор - за ось ординат y. Их пересечение (точка O ) служит началом координат данной зоны.

Чтобы избежать отрицательных значений ординат, координаты пересечения принимают равными x 0 = 0, y 0 = 500 км, что равносильно смещению оси х к западу на 500 км.

Чтобы по прямоугольным координатам точки можно было судить, в какой зоне она расположена, к ординате y слева приписывают номер координатной зоны.

Пусть например, координаты точки А имеют вид:

x А = 6 276 427 м

y А = 12 428 566 м

Эти координаты указывают на то, что точка А находится на расстоянии 6276427 м от экватора, в западной части (y < 500 км) 12-ой координатной зоны, на расстоянии 500000 - 428566 = 71434 м от осевого меридиана.

Для пространственных прямоугольных, геодезических и плоских прямоугольных координат в России принята единая система координат СК-95, закрепленная на местности пунктами государственной геодезической сети и построенная по спутниковым и наземным измерениям по состоянию на эпоху 1995 г.

Местные системы прямоугольных координат. При строительстве различных объектов часто используют местные (условные) системы координат, в которых направления осей и начало координат назначают, исходя из удобства их использования в ходе строительства и последующей эксплуатации объекта.

Так, при съемке железнодорожной станции ось у направляют по оси главного железнодорожного пути в направлении возрастания пикетажа, а ось х – по оси здания пассажирского вокзала.

При строительстве мостовых переходов ось х обычно совмещают с осью моста, а ось y идет в перпендикулярном направлении.

При строительстве крупных промышленных и гражданских объектов оси x и y направляют параллельно осям строящихся зданий.

2.3. Системы высот

Счет высот в инженерной геодезии ведут от одной из уровенных поверхностей.

Высотой точки называют расстояние по отвесной линии от точки до уровенной поверхности, принятой за начало счета высот.

Если высоты отсчитывают от основной уровенной поверхности, то есть от поверхности геоида, их называют абсолютными высотами Аа и Вв - абсолютные высоты точек А и В .

Если за начало счета высот выбрана какая-либо другая уровенная поверхность, то высоты называют условными . На рис. 2.5 отрезки отвесных линий Аа ¢ и Вв ¢ - условные высоты точек А и В .

В России принята Балтийская система высот. Счет абсолютных высот ведут от уровенной поверхности, проходящей через нуль Кронштадтского футштока .

Численное значение высоты принято называть отметкой. Например, если высота точки А равна H А = 15,378 м, то говорят, что отметка точки равна 15,378 м.

Разность высот двух точек называется превышением . Так, превышение точки В над точкой А равно

h AB = H В - H A .

Зная высоту точки А , для определения высоты точки В на местности измеряют превышение h AB . Высоту точки В вычисляют по формуле

H В = H A + h AB .

Измерение превышений и последующее вычисление высот точек называется нивелированием.

Абсолютную высоту точки следует отличать от ее геодезической высоты, то есть высоты, отсчитываемой от поверхности земного эллипсоида (см. раздел 2.2). Геодезическая высота отличается от абсолютной высоты на величину отклонения поверхности геоида от поверхности эллипсоида.

В заключение отметим, что точное определение положения поверхности геоида в области материков невозможно. Поэтому в России принято отсчитывать высоты от близкой к геоиду, но доступной точному определению вспомогательной поверхности, названной квазигеоидом . Высоты, отсчитываемые от поверхности геоида, называются ортометрическими высотами, а отсчитываемые от поверхности квазигеоида – нормальными высотами. На результаты измерений, выполняемых в инженерной геодезии, различия в двух названных системах высот влияния не оказывают, и в дальнейшем мы их различать не будем, а будем пользоваться введенным выше обобщенным понятием – абсолютные высоты.

Последние материалы

  • Основные закономерности татического деформирования грунтов

    За последние 15...20 лет в результате многочисленных экспериментальных исследований с применением рассмотренных выше схем испытаний получены обширные данные о поведении грунтов при сложном напряженном состоянии. Поскольку в настоящее время в…

  • Упругопластическое деформирование среды и поверхности нагружения

    Деформации упругопластических материалов, в том числе и грунтов, состоят из упругих (обратимых) и остаточных (пластических). Для составления наиболее общих представлений о поведении грунтов при произвольном нагружении необходимо изучить отдельно закономерности…

  • Описание схем и результатов испытаний грунтов с использованием инвариантов напряженного и деформированного состояний

    При исследовании грунтов, как и конструкционных материалов, в теории пластичности принято различать нагружение и разгрузку. Нагружением называют процесс, при котором происходит нарастание пластических (остаточных) деформаций, а процесс, сопровождающийся изменением (уменьшением)…

  • Инварианты напряженного и деформированного состояний грунтовой среды

    Применение инвариантов напряженного и деформированного состояний в механике грунтов началось с появления и развития исследований грунтов в приборах, позволяющих осуществлять двух- и трехосное деформирование образцов в условиях сложного напряженного состояния…

  • О коэффициентах устойчивости и сопоставление с результатами опытов

    Так как во всех рассмотренных в этой главе задачах грунт считается находящимся в предельном напряженном состоянии, то все результаты расчетов соответствуют случаю, когда коэффициент запаса устойчивости к3 = 1. Для…

  • Давление грунта на сооружения

    Особенно эффективны методы теории предельного равновесия в задачах определения давления грунта на сооружения, в частности подпорные стенки. При этом обычно принимается заданной нагрузка на поверхности грунта, например, нормальное давление р(х), и…

  • Несущая способность оснований

    Наиболее типичной задачей о предельном равновесии грунтовой среды является определение несущей способности основания под действием нормальной или наклонной нагрузок. Например, в случае вертикальных нагрузок на основании задача сводится к тому…

  • Процесс отрыва сооружений от оснований

    Задача оценки условий отрыва и определения требуемого для этого усилия возникает при подъеме судов, расчете держащей силы «мертвых» якорей, снятии с грунта морских гравитационных буровых опор при их перестановке, а…

  • Решения плоской и пространственной задач консолидации и их приложения

    Решений плоской и тем более пространственных задач консолидации в виде простейших зависимостей, таблиц или графиков очень ограниченное число. Имеются решения для случая приложения к поверхности двухфазного грунта сосредоточенной силы (В…

Пример 1. Вычислим на геоцентрической небесной сфере часовой угол Н и склонение тела, имеющего азимут (измеряемый в восточном направлении от точки севера) А и высоту а. При этом будем считать, что широта наблюдателя равна

На рис. 2.11 показана соответствующая небесная сфера, на которой X обозначает положение тела, а остальные символы имеют обычные значения.

Теорема косинусов, примененная к сферическому треугольнику PZX, дает

Отсюда можно вычислить . Воспользовавшись теоремой косинусов еще раз, получаем

откуда находим Н, так как б уже известно.

С другой стороны, используя формулу, связывающую четыре величины (90° - а), (360° - А), и H, получаем

Пример 2. Считая, что наклонение эклиптики равно преобразуем эклиптические координаты (небесную долготу К и небесную широту Р) космического аппарата в геоцентрические экваториальные координаты (прямое восхождение а и склонение ).

Как показано на рис. 2.12, в сферическом треугольнике КРХ (X - положение космического аппарата на небесной сфере) содержится вся необходимая информация.

Воспользовавшись по очереди теоремой косинусов, теоремой синусов и аналогом теоремы косинусов, получаем

откуда можно найти а и б.

Читателю предлагается в качестве упражнения провести преобразования, обратные рассмотренным в примерах 1 и 2.

Пример 3. По известным гелиоцентрическим прямоугольным координатам космического аппарата, обращающегося вокруг Солнца, определим его геоцентрическое расстояние , прямое восхождение а и склонение .

На этом примере будет проиллюстрирован ряд важных принципов. Для наблюдения аппарата с Земли или связи с ним в заданный момент времени нужно знать геоцентрические прямое восхождение, склонение и удаление аппарата. С другой стороны, межпланетный

планетный космический аппарат движется по орбите вокруг Солнца, а элементы такой орбиты определяются в гелиоцентрической системе. Зная элементы и время, можно определить прямоугольные координаты в системе с началом в центре Солнца. Ниже мы увидим, как это делается (см. гл. 4). В настоящем примере мы будем предполагать, что основой прямоугольной системы координат служат эклиптика и направление на Т. и покажем, как эти прямоугольные координаты можно преобразовать в геоцентрическое расстояние, прямое восхождение и склонение. В астрономии такое преобразование является стандартной процедурой. Обратная задача определения элементов орбиты по измерениям прямого восхождения и склонения тела также является стандартной процедурой.

Однако она сложнее и будет рассмотрена позже.

Задача решается в несколько этапов:

1) осуществляется переход от гелиоцентрической эклиптической прямоугольной системы координат к гелиоцентрической экваториальной прямоугольной системе;

2) от гелиоцентрической экваториальной прямоугольной системы переходим к геоцентрической экваториальной прямоугольной системе;

3) геоцентрические экваториальные прямоугольные координаты преобразуем в геоцентрическое расстояние, прямое восхождение и склонение.

Эти преобразования проводятся следующим образом:

1) На рис. 2.13 V обозначает положение аппарата относительно Солнца S. Относительно осей (образующих прямоугольную систему) аппарат имеет координаты так, что справедливо соотношение

SA (А - перигелий) пересекается со сферой в точке , а SV - в точке Q. Тогда имеем

В силу теоремы косинусов, примененной к сферическому треугольнику QTN, в котором угол равен 180° - i, получаем

следовательно,

Аналогично, применяя теорему косинусов к треугольнику QNB и вспоминая, что

получаем

Наконец, применение теоремы косинусов к треугольнику QKN дает

Чтобы перейти к гелиоцентрическим экваториальным прямоугольным координатам, заметим, что новые оси ST, SC и SP обладают следующими свойствами: ось SC лежит в экваториальной плоскости под углом 90° к ST, а ось SP перпендикулярна этой плоскости и направлена так, что три оси образуют правую тройку. Тогда новые оси SC и SP получаются из старых осей SB и SK поворотом последних вокруг на угол . Если гелиоцентрические

экваториальные прямоугольные координаты аппарата обозначить , то

Используя уравнения (2.4), (2.5) и (2.6), получаем

Введем ряд вспомогательных углов так, чтобы они удовлетворяли соотношениям

Тогда уравнения (2.7), (2.8) и (2.9) принимают вид

Этими формулами удобно пользоваться, если нужно вычислять прямоугольные координаты аппарата в нескольких положениях. Вспомогательные величины a, A, D, В, с, С являются функциями только элементов ; поэтому их можно вычислить один раз для всех положений. Переменные же и f должны вычисляться для каждого положения (способ их вычисления будет описан позднее - см. гл. 4). Следует, однако, заметить, что являются постоянными только в том случае, когда на аппарат не действуют никакие возмущения. Фактически такая ситуация наблюдается в большинстве межпланетных полетов на пассивных участках траектории.

2) Теперь начало координат переносится из центра Солнца в центр Земли. На рис. 2.14 Е - Земля, S - Солнце, и SP - оси гелиоцентрической экваториальной системы координат,

И - оси геоцентрической экваториальной прямоугольной системы координат, плоскость - плоскость земного экватора. Пусть координаты аппарата V относительно геоцентрических осей, так что

Гелиоцентрические экваториальные координаты Земли. Тогда

Если через (X, Y, Z) обозначить геоцентрические экваториальные координаты Солнца, то


Если на плоскости или в трехмерном пространстве ввести систему координат, то мы получим возможность описывать геометрические фигуры и их свойства с помощью уравнений и неравенств, то есть, мы сможем использовать методы алгебры. Поэтому понятие системы координат очень важно.

В этой статье мы покажем как задается прямоугольная декартова система координат на плоскости и в трехмерном пространстве и выясним как определяются координаты точек. Для наглядности приведем графические иллюстрации.

Навигация по странице.

Прямоугольная декартова система координат на плоскости.

Введем прямоугольную систему координат на плоскости.

Для этого проведем на плоскости две взаимно перпендикулярные прямые, выберем на каждой из них положительное направление , указав его стрелочкой, и выберем на каждой из них масштаб (единицу измерения длины). Обозначим точку пересечения этих прямых буквой О и будем считать ее началом отсчета . Так мы получили прямоугольную систему координат на плоскости.

Каждую из прямых с выбранным началом отсчета О , направлением и масштабом называют координатной прямой или координатной осью .

Прямоугольную систему координат на плоскости обычно обозначают Oxy , где Ox и Oy – ее координатные оси. Ось Ox называют осью абсцисс , а ось Oy – осью ординат .

Сейчас условимся с изображением прямоугольной системы координат на плоскости.

Обычно единица измерения длины на осях Ox и Oy выбирается одинаковая и откладывается от начала координат на каждой координатной оси в положительном направлении (отмечается штришком на координатных осях и рядом записывается единица), ось абсцисс направляется вправо, а ось ординат – вверх. Все остальные варианты направления координатных осей сводятся к озвученному (ось Ox - вправо, ось Oy - вверх) при помощи поворота системы координат на некоторый угол относительно начала координат и взгляда на нее с другой стороны плоскости (при необходимости).

Прямоугольную систему координат часто называют декартовой, так как ее на плоскости впервые ввел Рене Декарт. Еще чаще прямоугольную систему координат называют прямоугольной декартовой системой координат, собирая все воедино.

Прямоугольная система координат в трехмерном пространстве.

Аналогично задается прямоугольная система координат Oxyz в трехмерном евклидовом пространстве, только берется не две, а три взаимно перпендикулярных прямых. Другими словами, к координатным осям Оx и Oy добавляется координатная ось Oz , которую называют осью аппликат .

В зависимости от направления координатных осей различают правую и левую прямоугольные системы координат в трехмерном пространстве.

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит против хода часовой стрелки, то система координат называется правой .

Если смотреть с положительного направления оси Oz и кратчайший поворот от положительного направления оси Ox к положительному направлению оси Oy происходит по ходу часовой стрелки, то система координат называется левой .

Координаты точки в декартовой системе координат на плоскости.

Сначала рассмотрим координатную прямую Ox и возьмем некоторую точку M на ней.

Каждому действительному числу соответствует единственная точка M на этой координатной прямой. К примеру, точке, расположенной на координатной прямой на расстоянии от начала отсчета в положительном направлении, соответствует число , а числу -3 соответствует точка, расположенная на расстоянии 3 от начала отсчета в отрицательном направлении. Числу 0 соответствует начало отсчета.

С другой стороны, каждой точке M на координатной прямой Ox соответствует действительное число . Это действительное число есть ноль, если точка M совпадает с началом отсчета (с точкой O ). Это действительное число положительно и равно длине отрезка OM в данном масштабе, если точка M удалена от начала отсчета в положительном направлении. Это действительное число отрицательно и равно длине отрезка OM со знаком минус, если точка M удалена от начала отсчета в отрицательном направлении.

Число называется координатой точки M на координатной прямой.

Теперь рассмотрим плоскость с введенной прямоугольной декартовой системой координат. Отметим на этой плоскости произвольную точку М .

Пусть - проекция точки M на прямую Ox , а - проекции точки M на координатную прямую Oy (при необходимости смотрите статью ). То есть, если через точку M провести прямые, перпендикулярные координатным осям Ox и Oy , то точками пересечения этих прямых с прямыми Ox и Oy являются соответственно точки и .

Пусть точке на координатной оси Ox соответствует число , а точке на оси Oy - число .

Каждой точке М плоскости в заданной прямоугольной декартовой системе координат соответствует единственная упорядоченная пара действительных чисел , называемых координатами точки M на плоскости. Координату называют абсциссой точки М , а - ординатой точки М .

Верно и обратное утверждение: каждой упорядоченной паре действительных чисел соответствует точка М плоскости в заданной системе координат.

Координаты точки в прямоугольной системе координат в трехмерном пространстве.

Покажем как определяются координаты точки М в прямоугольной системе координат, заданной в трехмерном пространстве.

Пусть и - проекции точки M на координатные оси Ox , Oy и Oz соответственно. Пусть этим точкам на координатных осях Ox , Oy и Oz соответствуют действительные числа и .

Проекции точки M на координатные оси также можно получить, если построить плоскости, перпендикулярные прямым Ox , Oy и Oz и проходящие через точку M . Эти плоскости будут пересекать координатные прямые Ox , Oy и Oz в точках и соответственно.

Каждой точке трехмерного пространства в заданной декартовой системе координат соответствует упорядоченная тройка действительных чисел , называемых координатами точки M , числа и называют абсциссой , ординатой и аппликатой точки М соответственно. Верно и обратное утверждение: каждой упорядоченной тройке действительных чисел в заданной прямоугольной системе координат соответствует точка М трехмерного пространства.

Список литературы.

  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Позняк Э.Г., Юдина И.И. Геометрия. 7 – 9 классы: учебник для общеобразовательных учреждений.
  • Атанасян Л.С., Бутузов В.Ф., Кадомцев С.Б., Киселева Л.С., Позняк Э.Г.. Геометрия. Учебник для 10-11 классов средней школы.
  • Мордкович А.Г. Алгебра. 7 класс. Часть 1: учебник для учащихся общеобразовательных учреждений.

Система координат - способ задания точек пространства с помощью чисел . Количество чисел, необходимых для однозначного определения любой точки пространства, определяет его размерность. Обязательным элементом системы координат является начало координат - точка, от которой ведется отсчет расстояний. Другим обязательным элементом является единица длины, которая позволяет отсчитывать расстояния. Все точки одномерного пространства можно задать при выбранном начала координат одним числом. Для двумерного пространства необходимы два числа, для трехмерного - три. Эти числа называются координатами.


1. История

Развитие систем координат в истории человечества связан как с математическими задачами, так и с практическими проблемами искусства навигации , опиравшейся на картографию и астрономию . Известную систему координат, прямоугольную, предложил Рене Декарт в году. Понятие о полярную систему координат в европейской математике сложилось примерно в эти времена, но первые увляння о ней существовали еще в Древней Греции , в в средневековых арабских математиков, которые разрабатывали методы расчета направлении Каабу .

Становление понятия систем координат привело к развитию новых разделов геометрии: аналитической , проективной , начертательной .


2. Декартова система координат

Наиболее распространенной системой координат в математике есть декартова система координат , названная так в честь Рене Декарта . Декартова система координат задается началом координат и тремя векторами , которые определяют направление координатных осей . Каждая точка пространства задается числами, доринюють расстоянии от данной точки до координатных плоскостей.

Координаты декартовой системы на полощини принято обозначать , В пространстве .

Различные декартовы системы координат связаны между собой аффинные преобразования : смещением и поворотами.


3. Криволинейные системы координат

Исходя из декартовой системы координат, можно определить криволину систему координат, то есть, например, для трехмерного пространства числа , Связанных с декартовыми координатами спивидношеннямы:

,

где все функции однозначны и непрерывно дифференцированные, причем якобиан :

.

Примером криволинейной системы координат на плоскости является полярная система координат , в которой положение точки задается двумя числами: расстоянием между точкой и началом координат, и углом между лучом, который соединяет начало координат с точкой и выбранной осью. Декартовы и полярные координаты точки связаны между собой формулами:

, ,

Для трехмерного пространства популярные цилиндрическая и сферическая системы координат . Так, положение самолета в пространстве можно задать тремя числами: высотой, расстоянием до точки на поверхности Земли, над которой он пролетает, и углом между направлением на самолет и направлением на север. Такое задание соответствует цилиндрической системе координат, Альтернативно, положения самолета можно задать расстоянием до него и двумя углами: полярным и азимутальные. Такое задание соответствует сферической системе координат.

Разнообразие систем координат не исчерпывается приведенными. Существует очень много криволинейных систем координат, удобных для использования при решении той или иной математической задачи.


3.1. Свойства

Каждое из уравнений , Задает координатную плоскость. Пересечение двух координатных плоскостей с различными i задает координатную линию. Каждая точка пространства определяется пересечением трех координатных плоскостей.

Важными характеристиками криволинейных систем координат является длина элемента дуги и элемента объема в них. Эти величины используются при интегрировании. Длина элемента дуги задается квадратичной формой:

,

Являются компонентами метрического тензора .

Элемент объема равен в криволинейной системе координат

.

Квадрат якобиана равен детерминанту от метрического тензора:

.

Система координат называется правой, если касаются координатных линий, направлены в сторону роста соответствующих координат, образуют правую тройку векторов .

При описании векторов в криволинейной системе координат удобно пользоваться локальным базизом, определенным в каждой точке.


4. В географии


6. В физике

Описуюючы движение физических тел , физика использует понятие