R s конфигурации. Органическая химия

4.D, L -Система обозначения стереоизомеров.

В ряде случаев предпочитают пользоваться не R,S -системой обозначения абсолютной конфигурации, а другой, D,L -системой. Выбор D или L обоpyачения изомера основан на определенном расположении регерной группы в проекции Фишера. D , L -Номенклатура широко используется в названиях -амино, -гидроксикислот и углеводов.

По этой системе L -конфигурация приписывается стереозомеру, у которого в проекций Фишера реперная группа находится слева от вертикальной линии (от лат. "laevus" -левый). Соответственно, если реперная группа расположена в проекции Фишера справа, стереоизомер имеет D - конфигурацию (от лат. "dexter" - правый):

Конечно, надо помнить, что в проекции Фишера вверху располагает наиболее окисленный атом углерода (то есть, группу СООН в амино- и гидроксилкслотах и группу СН=О в углеводах).

Амино и гидроксикислоты

В -амино- и -гидроксикислотах реперными группами служат, соответственно, группы NH 2 и ОН:

Если в амино- или гидроксикислоте есть несколько амино- или гидрокси-групп, то указывают их взаимное расположение, пользуясь приставками "эритро", "трео" и.п. Отнесение кислоты к D- или L-ряду при этом определяет NH 2 или ОН-группа, находящаяся в - положении к СООН-группе, расположенной вверху в проекции Фишера:

В этом случае буквы D и L, указывающие положение реперной группы, снабжены индексом "S". Это делается во избежание путаницы. Индекс "S" подчеркивает, что указана конфигурация именно верхнего хирального центра, находящегося относительно карбоксильной группы в - положении, как и в аминокислоте серине ("S" - от слова "serine").

Для гидроксикислот с несколькими ОН-группами, а также аминогидроксикислот используют и альтернативный вариант обозначения конфигурации, в котором реперной группой является самая нижняя в проекции Фишера НО- группа. При этом конфигурационные дескрипторы D и L снабжаются подстрочным индексом "g" (от "glyceric aldehyde"). В этом случае изображенные на рис.123 и 124 аминокислоты получают названия: D g -треонин ( L s - треонин) и L g -треонин ( D s -треонин).

Углеводы .

В углеводах реперной группой является самая нижняя в проекции Фишера гидроксильная группа, связанная с аиммтрическим атомом углерода

Очевидно, что в случае молекул с одним асимметрическим атомом D,L -номенклатура, как и R,S -номенклатура однозначно говорит об абсолютной конфигурации центра хиральности. То же самое относится к применению D,L -наименования стереоизомеров с несколькими асимметрическими атомами, поскольку в этом случае конфигурация остальных центров хиральности задается приставками эритро-, трео-, рибо-, ликсо- и т.п. Так, если мы скажем "треоза", то зададим только относительную конфигурацию асимметрических атомов в молекуле. Тогда будет неясно, о каком именно энантиомере идет речь: (26) или (27), Если же мы скажем "D-треоза", то однозначно укажем, что имеется в виду изомер (26), поскольку в нем реперная группа ОН расположена справа в проекции Фишера:

Таким образом, название "D-треоза" (как и "L-треоза") говорит об абсолютной конфигурации обоих асимметрических атомов в молекуле.
Как и R,S -номенклатура, D,L-система обозначения стереоизомеров не связана со знаком оптического вращения.
Следует отметить, что ранее для обозначения направления вращения плоскости поляризации света использовались строчные буквы d (вправо) и l (влево). Не следует путать применение этих букв с использованием прописных букв D и L для обозначения конфигурации молекул. В настоящее время направление вращения плоскости поляризации света принято обозначать символами (+) и (-).

5.Хиральные молекулы без асимметрических атомов

В предыдущих разделах были рассмотрены молекулы, хиральность которых обусловлена определенным npocтранственным расположением четырех разных атомов или групп атомов относительно некоторого центра, называемого центром хиральности.

Возможны случаи, когда подобных центров в молекуле нет, но тем не менее молекула хиральна, поскольку в ней отсутствуют элементы симметрии группы S n . В таких случаях энантиомеры различаются расположением атомов относительно некоторой оси или плоскости, которые называют осью хиральности или плоскостью хиральностию. Ось хиральности встречается, например, в молекулах кумуленов.
Строение молекулы простейшего кумулена - аллена - такого, что два его фрагмента СН 2 находятся в двух взаимно перлендикулярных плоскостях:

Молекула аллена ахиральна: в ней есть две плоскости симметрии (показаны на рисунке). Ахиральны также молекулы бутадиена-1,2 и 3-метил-бутадиена-1,2

Если же мы рассмотрим молекулу пентадиена-2,3, то увидим, что в ней нет плоскостей симметрии (как нет и других элементов симметрии группы Sn). Этот диен существует в виде пары энантиомеров:

Хиральность молекул (28) и (29) обусловлена определенным простарственным расположением заместителей относительно оси (показана на рисунке), проходящей через атомы углерода, связанные двойными связями. Эту ось называют осью хиральности . О молекулах, подобных (28) и (29) говорят, что они обладают осевой хиральностью.

Оси хиральности имеются и в молекулах некоторых других соединений, например, спиросоединениях (спиранах):

Упомянутые антропоизомеры орто-дизамещенных бифенилов также представляют собой молекулы с осевой хиральностью.Примерами молекул с плоскостью хиральности могут служить молекулы пара-циклофанов:

Изображенные здесь энантиомеры не могут превратиться друг в друга за счет поворота вокруг -связей в силу пространственых требованй входящих в состав этих молекул фрагментов.

Для обозначения конфигурации молекул с осевой и плоскостной хиральностью можно использовать R,S-номенклатуру. Интересующиеся могут найти описание принципов отнесения конфигурации к R или S для таких молекул в издании ВИНИТИ: Hoмeнклатурные правила ИЮПАК по химии, т.3, полутом2, М., 1983.

6.К правилу последовательности в R,S - номенклатуре.

В ряде случаев при определении порядка старшинства заместителей встречаются осложнения.Рассмотрим некоторые из них.

Пример 1.

Очевидно, что в данном случае младшими заместителями при асимметрическом атоме углерода, отмеченном звездочкой, являются Н (d) и СН 3 (с). Рассмотрим два оставшихся сложных заместителя, расположив в них атомы по слоям.

В первом слое обоих заместителей атомы одинаковы. Во втором слое набор атомов также одинаков. (Н,С,О). Поэтому нам необходимо обратиться к третьему слою атомов. При этом в левом и правом заместителях следует в первую очередь сравнивать атомы Ш слоя, связанные со старшими атомами II- слоя (то есть рассматривать "старшие ветви " обоих заместителей). В данном случае речь идет об атома, связанных с атомом кислорода П слоя. Поскольку в правом заместителе с атомом кислорода связан атом С, а в левом - атом Н, правый заместитель получает преимущество в сташинстве:

Соединению следует приписать R-конфигурацию:

Если бы атомы "старшей ветви" в третьем слое оказались одинаковы, например, оба С, то надо было бы сравнивать атомы того же III слоя, но уже в младшей ветви. Тогда подучил бы преимущество левый заместитель. Однако, мы не достигаем этого пункта в наших сравнениях, так как можем сделать выбор уже на основании различия атомов Ш слоя старшей ветви.

Совершенно аналогично выбор порядка старшинства осуществляется, например, между такими заместителями:

Пример 2.
Может встретиться ситуация, когда для выбора старшего заместителя необходимо "пройди" через кратную связь. В таком случае прибегают к помощи так называемых фантомных атомов, имеющих нулевой атомный номер (то есть априорно самых младших) и валентность, равную 1.

В этом примере примере надр сделать выбор между левым и правим углеродсодержащими заместителями. Рассмотрим их, предварительно "раскрыв" двойную С=С связь первого заместителя. При этом появятся дублированнве атомы (выделены кружками). К дубликатам атомов присоединим фантомные атосмы (обозначим их буквой ф) так, чтобы довести валентность каждого до 4:

Теперь мы можем провести сравнение левого и правого заместителей:

Различие в третьем слое атомов позволяет отдать предпочтение в старшинстве правому заместителю:

Следовательно, соединение имеет R-конфигурацию.

Пример 3. В ряде случаев два заместителя при асимметрическом атоме структурно одинаковы, но различаются лишь абсолютной конфигурацией хиральных центров. Тогда принимают, что-R-конфигурация старше S-конфигурации . В соответствии с этим, центральному атому углерода в приведенном ниже примере следует приписать S-конфигурацию:

Пример 4 . Изложенные выше принципы применимы также для описания абсолютной конфигурации асимметрических атомов с тремя заместителями (атомы азота, фосфора, серы). При этом в качестве четвертого заместителя используют фантомный атом, который всегда является самым младшим (в роли фантомного атома можно рассматривать неподеленную пapy электронов):

Пример 5. Иногда для выбора старшинства заместителей приходится "раскрывать" цикл, подобно тому, как производят "раскрытие" кратной связи.

В данном случае легко определить самый старший (О) и самый младший (Н) заместители при атоме углерода, отмеченном звездочкой. Для того, чтобы сделать выбор между атомами углерода 1 Си 2 С, следует "раскрыть" цикл по связи 2 С- О согласно следующей схеме (дубликаты атомов выделены кружками):

В этом случае, в отличие от "раскрытия" кратных связей, дублированные атомы уже не представляют собой "тупиковые" ветви, а находят продолжение в повторении атома, отмеченного звездочкой. То есть, процедура "раскрытия" цикла заканчивается тогда, когда на концах обеих ветвей оказывается один и тот же атом (вернее, его дубликат). Теперь мы можем сравнить атомы 1 Си 2 С, рассмотрев соответствующие слои атомов:

Различие в третьем слое позволяет отдать преимущество в старшинстве - атому углерода 2 С. Следовательно, рассматриваемый центр хиралъноети имеет S-конфигурацию:

1.Э.Илиел, Основы стереохимии. М.: Мир, 1971, 107 с,
2.В.М.Потапов, Стереохимия. М.: Химия, 1988, 463 с.
3.В.И.Соколов, Введение в теоретическую стереохимию, М., Наука, 1979, 243 с.

Для определения абсолютной конфигурации хирального центра необходимо выполнить следующие операции:

1. Расположить хиральный центр так, чтобы луч зрения был направлен от хирального углерода к младшему заместителю.

2. В полученной проекции три оставшихся заместителя будут расположены под углом 120 o .Если убывание старшинства заместителей происходит по часовой стрелке - это R -конфигурация (предполагается следующие изменение старшинства: A > D > B):

если против часовой стрелки - S -конфигурация:

Определить абсолютную конфигурацию можно по формуле Фишера. Для этого действиями, не меняющими формулу Фишера младший заместитель помещают вниз. После этого рассматривают изменение старшинства трех оставшихся заместителей. Если убывание старшинства заместителей происходит по часовой стрелке - это R-конфигурация, если против - S-конфигурация. Младший заместитель при этом не принимается во внимание.

Пример

Рассмотрим определение конфигурации хиральных центров на примере 3-бром-2-метил-2-хлорбутанола-1, имеющего следующее строение:

Определим абсолютную конфигурацию С 2 . Для этого представим С 3 и С 4 , а также все, что с ними связано в виде радикала A :

Теперь исходная формула будет выглядеть так:

Определяем старшинство заместителей (от старшего к младшему): Сl > А > СН 2 ОН > СН 3 . Делаем четное число перестановок (это не меняет стереохимического смысла формулы!) таким образом, чтобы младший заместитель оказался внизу:

Теперь рассмотрим три верхних в формуле Фишера заместителя у хирального центра С 2:

Видно, что обход этих заместителей по убыванию старшинства происходит против часовой стрелки, следовательно конфигурация этого хирального центра – S.

Аналогичные действия проделаем и для другого хирального центра, связанного с С 3 . Снова представим, на этот раз С 2 и все, что с ним связано, в виде радикала В :

Теперь исходная формула станет выглядеть так:

Опять определяем старшинство заместителей (от старшего к младшему): Br > B > СН 3 > H. Делаем четное число перестановок так, чтобы младший заместитель опять оказался внизу:

Определим, в каком направлении происходит убывание старшинства (нижний, самый младший заместитель не принимаем во внимание!):

Убывание старшинства заместителей происходит происходит против часовой стрелки, следовательно конфигурация и этого хирального центра – S.

Название исходного вещества с учетом абсолютной конфигурации хиральных центров - 3-/S/-бром-2-/S/-метил-2-хлорбутанол-1

Как обозначить конфигурацию соединения, чтобы по названию можно было изобразить пространственное расположение групп у хирального атома углерода? Для этого используют R,S -систему, предложенную К. Ингольдом, Р. Каном, З. Прелогом. R,S -система основана на определении старшинства заместителей вокруг хирального центра. Старшинство групп определяется следующим образом:

1). Атом с большим атомным номером является старшим относительно атома с меньшим атомным номером.

2). Если непосредственно соединенные с углеродом С* атомы одинаковы, то необходимо рассмотреть старшинство последующих атомов.

Например, как определить старшую из групп: -C 2 Н 5 и СН(СН 3) 2 в соединении

В этильной группе за атомом, соединённым с хиральным центром, следуют Н, Н и С, а в изопропильной группе - Н, С и С. Сравнивая эти группы между собой, устанавливаем, что изопропильная группа старше, чем этильная.

3). Если хиральный углерод С* соединён с атомом, имеющим кратную связь, то связи этого атома следует представить как простые связи.

4). Для того, чтобы установить конфигурацию молекулы, её располагают так, чтобы связь хирального центра с младшей группой под номером 4 была направлена от наблюдателя, и определяют расположение оставшихся групп (рис. 2.6).

Рис. 2.6. Определение R,S -конфигураций

Если старшинство групп убывает (1®2®3) по часовой стрелке, то конфигурация хирального центра определяется как R (от латинского слова “rectus” - правый). Если старшинство заместителей убывает против часовой стрелки, то конфигурация хирального центра - S (от латинского “sinister” - левый).

Знак оптического вращения (+) или (-) определяется экспериментально и не связан с обозначением конфигурации (R ) или (S ). Например, правовращающий 2-бутанол имеет (S )-конфигурацию.

Для того, чтобы определить конфигурацию соединения, изображённого проекционной формулой Фишера поступают следующим образом.

1). Выполняют чётное число перестановок заместителей у хирального центра (нечётное число перестановок приведёт к энантиомеру) так, чтобы младший заместитель под номером 4 оказался вверху или внизу.



2). Определяют расположение оставшихся групп, обходя их в порядке убывания старшинства. Если старшинство заместителей убывает по часовой стрелке, то исходную конфигурацию определяют как R -конфигурацию, если против часовой стрелки, то конфигурацию определяют как S -конфигурацию.

Если преобразовать проекционную формулу непросто, можно установить порядок уменьшения старшинства, отбросив младший заместитель, стоящий сбоку, но выбрать для обозначения конфигурации «обратный» символ. Например, в исходном соединении

отбросив младший заместитель (H), устанавливаем порядок уменьшения старшинства: 1→2→3. Получаем обозначение (S ), меняем его на (R ) и получаем правильное название: (R )-2-хлорэтансульфоновая кислота.

You need to enable JavaScript to run this app.

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Возникает следующая проблема; как же обозначить определенную конфигурацию каким-то более простым, более удобным способом, чтобы каждый раз не рисовать ее структуру? Для этой цели наиболее широко используют

символы Эта система обозначений предложена Каном (Химическое общество, Лондон), К. Ингольдом (Университетский колледж, Лондон) и В. Прелогом (Федеральная высшая техническая школа, Цюрих).

Согласно этой системе, сначала определяют старшинство, или последовательность, заместителей, т. е. четырех атомов или групп, связанных с асимметрическим атомом углерода, исходя из правила старшинства (разд. 3.16).

Например, в случае с асимметрическим атомом углерода связаны четыре различных атома, и старшинство их зависит только от атомного номера, причем, чем больше атомный номер, тем старше заместитель. Таким образом, в порядке уменьшения их старшинства атомы располагаются в следующем порядке:

Затем молекулу располагают, так, чтобы младшая группа была направлена от наблюдателя, и рассматривают расположение оставшихся групп. Если старшинство этих групп уменьшается по часовой стрелке, то конфигурацию обозначают символом R (от латинского rectus - правый); если же старшинство этих групп уменьшается против часовой стрелки, то конфигурацию обозначают символом (от латинского sinister - левый).

Таким образом, конфигурации I и II выглядят следующим образом:

и обозначаются соответственно символами

Полное название оптически активного соединения отражает и конфигурацию и направление вращения, как, например, Рацемическую модификацию можно обозначить символом например -вторбутилхлорид.

(Обозначение соединений с несколькими асимметрическими атомами углерода обсуждается в разд. 3.17.)

Конечно, нельзя путать направление оптического вращения соединения (такого же физического свойства реального вещества, как температура кипения или плавления) с направлением нашего взгляда, когда мы мысленно располагаем молекулу каким-то определенным условным образом. Пока для определенного соединения экспериментально не установлена связь между конфигурацией и знаком вращения, нельзя сказать, знак или соответствует или -конфигурации.