Метод математической индукции и его применение к решению задач. Метод математической индукции

Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:

10=5+5 12=5+7 14=7+7 16=5+11 . . . 92=3+89 94=5+89 96=7+89 98=19+79.

Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.

Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:

1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n 0);

2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.

Задачи с решениями

1. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Обозначим А(n)=3 2n+1 +2 n+2 .

База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.

Предположение индукции. Пусть А(k) делится на 7.

Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.

А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=

3 2k+1 ·9+2 k+2 ·(9–7)=(3 2k+1 +2 k+2)·9–7·2 k+2 =9·А(k)–7·2 k+2 .

Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.

2. Доказать, что при любом натуральном n число 2 3 n +1 делится на 3 n+1 и не делится на 3 n+2 .

Введём обозначение: а i =2 3 i +1.

При n=1 имеем, а 1 =2 3 +1=9. Итак, а 1 делится на 3 2 и не делится на 3 3 .

Пусть при n=k число а k делится на 3 k+1 и не делится на 3 k+2 , то есть а k =2 3 k +1=3 k+1 ·m, где m не делится на 3. Тогда

а k+1 =2 3 k+1 +1=(2 3 k) 3 +1=(2 3 k +1)(2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k)=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k)=

3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k).

Очевидно, что а k+1 делится на 3 k+2 и не делится на 3 k+3 .

Следовательно, утверждение доказано для любого натурального n.

3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.

Введём обозначение: а i =х i +1/х i и сразу отметим, что а i =а –i , поэтому дальше будем вести речь о натуральных индексах.

Заметим: а 1 – целое число по условию; а 2 – целое, так как а 2 =(а 1) 2 –2; а 0 =2.

Предположим, что а k целое при любом натуральном k не превосходящем n. Тогда а 1 ·а n – целое число, но а 1 ·а n =а n+1 +а n–1 и а n+1 =а 1 ·а n –а n–1 . Однако, а n–1 , согласно индукционному предположению, – целое. Значит, целым является и а n+1 . Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.

4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство

5. Доказать, что при натуральном n > 1 и |х|

(1–x) n +(1+x) n

При n=2 неравенство верно. Действительно,

(1–x) 2 +(1+x) 2 = 2+2·х 2

Если неравенство верно при n=k, то при n=k+1 имеем

(1–x) k+1 +(1+x) k+1

Неравенство доказано для любого натурального n > 1.

6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.

Воспользуемся методом математической индукции.

При n=1 утверждение очевидно.

Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).

Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.

7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:

1) каждая его вершина окрашена в один из трёх цветов;

2) любые две соседние вершины окрашены в разные цвета;

3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.

Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.

Воспользуемся методом математической индукции.

База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.

Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.

Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А 1 , А 2 , А 3 , … А n , А n+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.

Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А 1 , а цифрой 2 цвет вершины А 2 . Пусть k – такой наименьший номер, что вершина А k окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю А k–2 А k треугольник А k–2 А k–1 А k . В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А 1 А 2 … А k–2 А k А k+1 … А n+1 , который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.

8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.

Проведём доказательство методом математической индукции.

Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.

Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.

Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.

Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.

9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.

С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.

Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что

N(2)=N(1)+2=2+2,

N(3)=N(2)+3=2+2+3,

N(4)=N(3)+4=2+2+3+4.

Естественно предположить, что

N(n)=N(n–1)+n=2+2+3+4+5+…+n,

или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,

N(n)=1+n(n+1)/2.

Докажем справедливость этой формулы методом математической индукции.

Для n=1 формула уже проверена.

Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,

N(k+1)=N(k)+k+1=1+ k(k+1)/2+k+1=1+(k+1)(k+2)/2,

что и требовалось доказать.

10. В выражении х 1:х 2: … :х n для указания порядка действий расставляются скобки и результат записывается в виде дроби:

(при этом каждая из букв х 1 , х 2 , … , х n стоит либо в числителе дроби, либо в знаменателе). Сколько различных выражения можно таким образом получить при всевозможных способах расстановки скобок?

Прежде всего ясно, что в полученной дроби х 1 будет стоять в числителе. Почти столь же очевидно, что х 2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х 2 , относится либо к самому х 2 , либо к какому-либо выражению, содержащему х 2 в числителе).

Можно предположить, что все остальные буквы х 3 , х 4 , … , х n могут располагаться в числителе или знаменателе совершенно произвольным образом. Отсюда следует, что всего можно получить 2 n–2 дробей: каждая из n–2 букв х 3 , х 4 , … , х n может оказаться независимо от остальных в числителе или знаменателе.

Докажем это утверждение по индукции.

При n=3 можно получить 2 дроби:

так что утверждение справедливо.

Предположим, что оно справедливо при n=k и докажем его для n=k+1.

Пусть выражение х 1:х 2: … :х k после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо х k подставить х k:х k+1 , то х k окажется там же, где и было в дроби Q, а х k+1 будет стоять не там, где стояло х k (если х k было в знаменателе, то х k+1 окажется в числителе и наоборот).

Теперь докажем, что можно добавить х k+1 туда же, где стоит х k . В дроби Q после расстановки скобок обязательно будет выражение вида q:х k , где q – буква х k–1 или некоторое выражение в скобках. Заменив q:х k выражением (q:х k):х k+1 =q:(х k ·х k+1), мы получим, очевидно, ту же самую дробь Q, где вместо х k стоит х k ·х k+1 .

Таким образом, количество всевозможных дробей в случае n=k+1 в 2 раза больше чем в случае n=k и равно 2 k–2 ·2=2 (k+1)–2 . Тем самым утверждение доказано.

Ответ: 2 n–2 дробей.

Задачи без решений

1. Доказать, что при любом натуральном n:

а) число 5 n –3 n +2n делится на 4;

б) число n 3 +11n делится на 6;

в) число 7 n +3n–1 делится на 9;

г) число 6 2n +19 n –2 n+1 делится на 17;

д) число 7 n+1 +8 2n–1 делится на 19;

е) число 2 2n–1 –9n 2 +21n–14 делится на 27.

2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).

3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.

4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.

5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.

Метод математической индукции

Вступление

Основная часть

  1. Полная и неполная индукция
  2. Принцип математической индукции
  3. Метод математической индукции
  4. Решение примеров
  5. Равенства
  6. Деление чисел
  7. Неравенства

Заключение

Список использованной литературы

Вступление

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному.

Метод математической индукции можно сравнить с прогрессом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно.

Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени. Ну, скажите, что полезного человеку принесут те два-три урока, за которые он услышит пять слов теории, решит пять примитивных задач, и, в результате получит пятёрку за то, что он ничего не знает.

А ведь это так важно - уметь размышлять индуктивно.

Основная часть

По своему первоначальному смыслу слово “индукция” применяется к рассуждениям, при помощи которых получают общие выводы, опираясь на ряд частных утверждений. Простейшим методом рассуждений такого рода является полная индукция. Вот пример подобного рассуждения.

Пусть требуется установить, что каждое натуральное чётное число n в пределах 4представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:

4=2+2; 6=3+3; 8=5+3; 10=7+3; 12=7+5;

14=7+7; 16=11+5; 18=13+5; 20=13+7.

Эти девять равенств показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.

Таким образом, полная индукция заключается в том, что общее утверждение доказывается по отдельности в каждом из конечного числа возможных случаев.

Иногда общий результат удаётся предугадать после рассмотрения не всех, а достаточно большого числа частных случаев (так называемая неполная индукция).

Результат, полученный неполной индукцией, остается, однако, лишь гипотезой, пока он не доказан точным математическим рассуждением, охватывающим все частные случаи. Иными словами, неполная индукция в математике не считается законным методом строгого доказательства, но является мощным методом открытия новых истин.

Пусть, например, требуется найти сумму первых n последовательных нечётных чисел. Рассмотрим частные случаи:

1+3+5+7+9=25=5 2

После рассмотрения этих нескольких частных случаев напрашивается следующий общий вывод:

1+3+5+…+(2n-1)=n 2

т.е. сумма n первых последовательных нечётных чисел равна n 2

Разумеется, сделанное наблюдение ещё не может служить доказательством справедливости приведённой формулы.

Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для бесконечного числа случаев мы не в состоянии. Неполная же индукция часто приводит к ошибочным результатам.

Во многих случаях выход из такого рода затруднений заключается в обращении к особому методу рассуждений, называемому методом математической индукции. Он заключается в следующем.

Пусть нужно доказать справедливость некоторого утверждения для любого натурального числа n (например нужно доказать, что сумма первых n нечётных чисел равна n 2). Непосредственная проверка этого утверждения для каждого значения n невозможна, поскольку множество натуральных чисел бесконечно. Чтобы доказать это утверждение, проверяют сначала его справедливость для n=1. Затем доказывают, что при любом натуральном значении k из справедливости рассматриваемого утверждения при n=k вытекает его справедливость и при n=k+1.

Тогда утверждение считается доказанным для всех n. В самом деле, утверждение справедливо при n=1. Но тогда оно справедливо и для следующего числа n=1+1=2. Из справедливости утверждения для n=2 вытекает его справедливость для n=2+

1=3. Отсюда следует справедливость утверждения для n=4 и т.д. Ясно, что, в конце концов, мы дойдём до любого натурального числа n. Значит, утверждение верно для любого n.

Обобщая сказанное, сформулируем следующий общий принцип.

Принцип математической индукции.

Если предложение А(n ), зависящее от натурального числа n , истинно для n =1 и из того, что оно истинно для n = k (где k -любое натуральное число), следует, что оно истинно и для следующего числа n = k +1, то предположение А(n ) истинно для любого натурального числа n .

В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом.

Если предложение А(n ) истинно при n = p и если А(k ) Þ А(k +1) для любого k > p , то предложение А(n ) истинно для любого n > p .

Доказательство по методу математической индукции проводиться следующим образом. Сначала доказываемое утверждение проверяется для n=1, т.е. устанавливается истинность высказывания А(1). Эту часть доказательства называют базисом индукции. Затем следует часть доказательства, называемая индукционным шагом. В этой части доказывают справедливость утверждения для n=k+1 в предположении справедливости утверждения для n=k (предположение индукции), т.е. доказывают, что А(k)ÞA(k+1).

ПРИМЕР 1

Доказать, что 1+3+5+…+(2n-1)=n 2 .

Решение: 1) Имеем n=1=1 2 . Следовательно,

утверждение верно при n=1, т.е. А(1) истинно.

2) Докажем, что А(k)ÞA(k+1).

Пусть k-любое натуральное число и пусть утверж-дение справедливо для n=k, т.е.

1+3+5+…+(2k-1)=k 2 .

Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что

1+3+5+…+(2k+1)=(k+1) 2 .

В самом деле,

1+3+5+…+(2k-1)+(2k+1)=k 2 +2k+1=(k+1) 2 .

Итак, А(k)ÞА(k+1). На основании принципа математической индукции заключаем, что предпо-ложение А(n) истинно для любого nÎN.

ПРИМЕР 2

Доказать, что

1+х+х 2 +х 3 +…+х n =(х n +1 -1)/(х-1), где х¹1

Решение: 1) При n=1 получаем

1+х=(х 2 -1)/(х-1)=(х-1)(х+1)/(х-1)=х+1

следовательно, при n=1 формула верна; А(1) ис-тинно.

2) Пусть k-любое натуральное число и пусть формула верна при n=k, т.е.

1+х+х 2 +х 3 +…+х k =(х k +1 -1)/(х-1).

Докажем, что тогда выполняется равенство

1+х+х 2 +х 3 +…+х k +x k +1 =(x k +2 -1)/(х-1).

В самом деле

1+х+х 2 +x 3 +…+х k +x k +1 =(1+x+x 2 +x 3 +…+x k)+x k +1 =

=(x k +1 -1)/(x-1)+x k +1 =(x k +2 -1)/(x-1).

Итак, А(k)ÞA(k+1). На основании принципа математической индукции заключаем, что форму-ла верна для любого натурального числа n.

ПРИМЕР 3

Доказать, что число диагоналей выпуклого n-угольника равно n(n-3)/2.

Решение: 1) При n=3 утверждение спра-

А 3 ведливо, ибо в треугольнике

 А 3 =3(3-3)/2=0 диагоналей;

А 2 А(3) истинно.

2) Предположим, что во всяком

выпуклом k-угольнике имеет-

А 1 ся А k =k(k-3)/2 диагоналей.

А k Докажем, что тогда в выпуклом

(k+1)-угольнике число

диагоналей А k +1 =(k+1)(k-2)/2.

Пусть А 1 А 2 А 3 …A k A k +1 -выпуклый (k+1)-уголь-ник. Проведём в нём диагональ A 1 A k . Чтобы под-считать общее число диагоналей этого (k+1)-уголь-ника нужно подсчитать число диагоналей в k-угольнике A 1 A 2 …A k , прибавить к полученному числу k-2, т.е. число диагоналей (k+1)-угольника, исходящих из вершины А k +1 , и, кроме того, следует учесть диагональ А 1 А k .

Таким образом,

 k +1 = k +(k-2)+1=k(k-3)/2+k-1=(k+1)(k-2)/2.

Итак, А(k)ÞA(k+1). Вследствие принципа математической индукции утверждение верно для любого выпуклого n-угольника.

ПРИМЕР 4

Доказать, что при любом n справедливо утвер-ждение:

1 2 +2 2 +3 2 +…+n 2 =n(n+1)(2n+1)/6.

Решение: 1) Пусть n=1, тогда

Х 1 =1 2 =1(1+1)(2+1)/6=1.

Значит, при n=1 утверждение верно.

2) Предположим, что n=k

Х k =k 2 =k(k+1)(2k+1)/6.

3) Рассмотрим данное утвержде-ние при n=k+1

X k +1 =(k+1)(k+2)(2k+3)/6.

X k +1 =1 2 +2 2 +3 2 +…+k 2 +(k+1) 2 =k(k+1)(2k+1)/6+ +(k+1) 2 =(k(k+1)(2k+1)+6(k+1) 2)/6=(k+1)(k(2k+1)+

6(k+1))/6=(k+1)(2k 2 +7k+6)/6=(k+1)(2(k+3/2)(k+

2))/6=(k+1)(k+2)(2k+3)/6.

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого на-турального n.

ПРИМЕР 5

Доказать, что для любого натурального n спра-ведливо равенство:

1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.

Решение: 1) Пусть n=1.

Тогда Х 1 =1 3 =1 2 (1+1) 2 /4=1.

Мы видим, что при n=1 утверждение верно.

2) Предположим, что равенство верно при n=k

X k =k 2 (k+1) 2 /4.

3) Докажем истинность этого ут-верждения для n=k+1, т.е.

Х k+1 =(k+1) 2 (k+2) 2 /4. X k+1 =1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k++1) 2 +4(k+1) 3)/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.

Из приведённого доказательства видно, что ут-верждение верно при n=k+1, следовательно, равен-ство верно при любом натуральном n.

ПРИМЕР 6

Доказать, что

((2 3 +1)/(2 3 -1))´((3 3 +1)/(3 3 -1))´…´((n 3 +1)/(n 3 -1))=3n(n+1)/2(n 2 +n+1), где n>2.

Решение: 1) При n=2 тождество выглядит: (2 3 +1)/(2 3 -1)=(3´2´3)/2(2 2 +2+1),

т.е. оно верно.

2) Предположим, что выражение верно при n=k

(2 3 +1)/(2 3 -1)´…´(k 3 +1)/(k 3 -1)=3k(k+1)/2(k 2 +k+1).

3) Докажем верность выражения при n=k+1.

(((2 3 +1)/(2 3 -1))´…´((k 3 +1)/(k 3 -1)))´(((k+1) 3 +

1)/((k+1) 3 -1))=(3k(k+1)/2(k 2 +k+1))´((k+2)((k+

1) 2 -(k+1)+1)/k((k+1) 2 +(k+1)+1))=3(k+1)(k+2)/2´

´((k+1) 2 +(k+1)+1).

Мы доказали справедливость равенства и при n=k+1, следовательно, в силу метода математиче-ской индукции, утверждение верно для любого n>2

ПРИМЕР 7

Доказать, что

1 3 -2 3 +3 3 -4 3 +…+(2n-1) 3 -(2n) 3 =-n 2 (4n+3)

для любого натурального n.

Решение: 1) Пусть n=1, тогда

1 3 -2 3 =-1 3 (4+3); -7=-7.

2) Предположим, что n=k, тогда

1 3 -2 3 +3 3 -4 3 +…+(2k-1) 3 -(2k) 3 =-k 2 (4k+3).

3) Докажем истинность этого ут-верждения при n=k+1

(1 3 -2 3 +…+(2k-1) 3 -(2k) 3)+(2k+1) 3 -(2k+2) 3 =-k 2 (4k+3)+

+(2k+1) 3 -(2k+2) 3 =-(k+1) 3 (4(k+1)+3).

Доказана и справедливость равенства при n=k+1, следовательно утверждение верно для лю-бого натурального n.

ПРИМЕР 8

Доказать верность тождества

(1 2 /1´3)+(2 2 /3´5)+…+(n 2 /(2n-1)´(2n+1))=n(n+1)/2(2n+1)

для любого натурального n.

1) При n=1 тождество верно 1 2 /1´3=1(1+1)/2(2+1).

2) Предположим, что при n=k

(1 2 /1´3)+…+(k 2 /(2k-1)´(2k+1))=k(k+1)/2(2k+1).

3) Докажем, что тождество верно при n=k+1.

(1 2 /1´3)+…+(k 2 /(2k-1)(2k+1))+(k+1) 2 /(2k+1)(2k+3)=(k(k+1)/2(2k+1))+((k+1) 2 /(2k+1)(2k+3))=((k+1)/(2k+1))´((k/2)+((k+1)/(2k+3)))=(k+1)(k+2)´ (2k+1)/2(2k+1)(2k+3)=(k+1)(k+2)/2(2(k+1)+1).

Из приведённого доказательства видно, что ут-верждение верно при любом натуральном n.

ПРИМЕР 9

Доказать, что (11 n+2 +12 2n+1) делится на 133 без остатка.

Решение: 1) Пусть n=1, тогда

11 3 +12 3 =(11+12)(11 2 -132+12 2)=23´133.

Но (23´133) делится на 133 без остатка, значит при n=1 утверждение верно; А(1) истинно.

2) Предположим, что (11 k+2 +12 2k+1) делится на 133 без остатка.

3) Докажем, что в таком случае

(11 k+3 +12 2k+3) делится на 133 без остатка. В самом деле 11 k +3 +12 2л+3 =11´11 k+2 +12 2 ´12 2k+1 =11´11 k+2 +

+(11+133)´12 2k+1 =11(11 k+2 +12 2k+1)+133´12 2k+1 .

Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без ос-татка по предположению, а во втором одним из множителей выступает 133. Итак, А(k)ÞА(k+1). В силу метода математической индукции утвержде-ние доказано.

ПРИМЕР 10

Доказать, что при любом n 7 n -1 делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда Х 1 =7 1 -1=6 де-лится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

7 k -1 делится на 6 без остатка.

3) Докажем, что утверждение справедливо для n=k+1.

X k+1 =7 k+1 -1=7´7 k -7+6=7(7 k -1)+6.

Первое слагаемое делится на 6, поскольку 7 k -1 делится на 6 по предположению, а вторым слага-емым является 6. Значит 7 n -1 кратно 6 при любом натуральном n. В силу метода математической ин-дукции утверждение доказано.

ПРИМЕР 11

Доказать, что 3 3n-1 +2 4n-3 при произвольном на-туральном n делится на 11.
Решение: 1) Пусть n=1, тогда

Х 1 =3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остат-ка. Значит, при n=1 утверждение верно.

2) Предположим, что при n=k

X k =3 3k-1 +2 4k-3 делится на 11 без остатка.

3) Докажем, что утверждение верно для n=k+1.

X k+1 =3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 ´3 3k-1 +2 4 ´2 4k-3 =

27´3 3k-1 +16´2 4k-3 =(16+11)´3 3k-1 +16´2 4k-3 =16´3 3k-1 +

11´3 3k-1 +16´2 4k-3 =16(3 3 k -1 +2 4k-3)+11´3 3k-1 .

Первое слагаемое делится на 11 без остатка, поскольку 3 3 k-1 +2 4k-3 делится на 11 по предположе-нию, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма де-лится на 11 без остатка при любом натуральном n. В силу метода математической индукции утвер-ждение доказано.

ПРИМЕР 12

Доказать, что 11 2n -1 при произвольном нату-ральном n делится на 6 без остатка.

Решение: 1) Пусть n=1, тогда 11 2 -1=120 делится на 6 без остатка. Значит при n=1 утвержде-ние верно.

2) Предположим, что при n=k

11 2 k -1 делится на 6 без остатка.

11 2(k+1) -1=121´11 2k -1=120´11 2k +(11 2k -1).

Оба слагаемых делятся на 6 без остатка: пер-вое содержит кратное 6-ти число 120, а второе де-лится на 6 без остатка по предположению. Значит и сумма делится на 6 без остатка. В силу метода математической индукции утверждение доказано.

ПРИМЕР 13

Доказать, что 3 3 n+3 -26n-27 при произвольном натуральном n делится на 26 2 (676) без остатка.

Решение: Предварительно докажем, что 3 3 n+3 -1 делится на 26 без остатка.

  1. При n=0

3 3 -1=26 делится на 26

  1. Предположим, что при n=k

3 3k+3 -1 делится на 26

  1. Докажем, что утверждение

верно при n=k+1.

3 3 k+6 -1=27´3 3k+3 -1=26´3 3л+3 +(3 3 k +3 -1) -делится на 26

Теперь проведём доказательство утвер-ждения, сформулированного в условии задачи.

1) Очевидно, что при n=1 утвер-ждение верно

3 3+3 -26-27=676

2) Предположим, что при n=k

выражение 3 3 k+3 -26k-27 делится на 26 2 без остатка.

3) Докажем, что утверждение верно при n=k+1

3 3k+6 -26(k+1)-27=26(3 3k+3 -1)+(3 3k+3 -26k-27).

Оба слагаемых делятся на 26 2 ; первое делится на 26 2 , потому что мы доказали делимость на 26 выражения, стоящего в скобках, а второе делится по предположению индукции. В силу метода мате-матической индукции утверждение доказано.

ПРИМЕР 14

Доказать, что если n>2 и х>0, то справедливо неравенство

(1+х) n >1+n´х.

Решение: 1) При n=2 неравенство справед-ливо, так как

(1+х) 2 =1+2х+х 2 >1+2х.

Значит, А(2) истинно.

2) Докажем, что А(k)ÞA(k+1), если k> 2. Предположим, что А(k) истинно, т.е., что справедливо неравенство

(1+х) k >1+k´x. (3)

Докажем, что тогда и А(k+1) истинно, т.е., что справедливо неравенство

(1+x) k+1 >1+(k+1)´x.

В самом деле, умножив обе части неравенства (3) на положительное число 1+х, получим

(1+x) k+1 >(1+k´x)(1+x).

Рассмотрим правую часть последнего неравен-

ства; имеем

(1+k´x)(1+x)=1+(k+1)´x+k´x 2 >1+(k+1)´x.

В итоге получаем, что

(1+х) k+1 >1+(k+1)´x.

Итак, А(k)ÞA(k+1). На основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого

ПРИМЕР 15

Доказать, что справедливо неравенство

(1+a+a 2) m > 1+m´a+(m(m+1)/2)´a 2 при а> 0.

Решение: 1) При m=1

(1+а+а 2) 1 > 1+а+(2/2)´а 2 обе части равны.

2) Предположим, что при m=k

(1+a+a 2) k >1+k´a+(k(k+1)/2)´a 2

3) Докажем, что при m=k+1 не-равенство верно

(1+a+a 2) k+1 =(1+a+a 2)(1+a+a 2) k >(1+a+a 2)(1+k´a+

+(k(k+1)/2)´a 2)=1+(k+1)´a+((k(k+1)/2)+k+1)´a 2 +

+((k(k+1)/2)+k)´a 3 +(k(k+1)/2)´a 4 > 1+(k+1)´a+

+((k+1)(k+2)/2)´a 2 .

Мы доказали справедливость неравенства при m=k+1, следовательно, в силу метода математиче-ской индукции, неравенство справедливо для лю-бого натурального m.

ПРИМЕР 16

Доказать, что при n>6 справедливо неравенство

Решение: Перепишем неравенство в виде

  1. При n=7 имеем

3 7 /2 7 =2187/128>14=2´7

неравенство верно.

  1. Предположим, что при n=k

3) Докажем верность неравен-ства при n=k+1.

3 k+1 /2 k+1 =(3 k /2 k)´(3/2)>2k´(3/2)=3k>2(k+1).

Так как k>7, последнее неравенство очевидно.

В силу метода математической индукции неравен-ство справедливо для любого натурального n.

ПРИМЕР 17

Доказать, что при n>2 справедливо неравенство

1+(1/2 2)+(1/3 2)+…+(1/n 2)

Решение: 1) При n=3 неравенство верно

1+(1/2 2)+(1/3 2)=245/180

  1. Предположим, что при n=k

1+(1/2 2)+(1/3 2)+…+(1/k 2)=1,7-(1/k).

3) Докажем справедливость не-

равенства при n=k+1

(1+(1/2 2)+…+(1/k 2))+(1/(k+1) 2)

Докажем, что 1,7-(1/k)+(1/(k+1) 2)

Û(1/(k+1) 2)+(1/k+1)Ûk(k+2)

Последнее очевидно, а поэтому

1+(1/2 2)+(1/3 2)+…+(1/(k+1) 2)

В силу метода математической индукции не-равенство доказано.

Заключение

Вчастности изучив метод математической индукции, я повысил свои знания в этой облас-ти математики, а также научился решать задачи, которые раньше были мне не под силу.

В основном это были логические и занима-тельные задачи, т.е. как раз те, которые повы-шают интерес к самой математике как к науке. Решение таких задач становится заниматель-ным занятием и может привлечь в математиче-ские лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

МАТЕМАТИКА:

ЛЕКЦИИ, ЗАДАЧИ, РЕШЕНИЯ

Учебное пособие / В.Г.Болтянский, Ю.В.Сидоров, М.И.Шабунин. ООО “Попурри” 1996.

АЛГЕБРА И НАЧАЛА АНАЛИЗА

Учебное пособие / И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. “Просвещение” 1975.

Истинное знание во все времена основывалось на установлении закономерности и доказательстве её правдивости в определенных обстоятельствах. За столь длительный срок существования логических рассуждений были даны формулировки правил, а Аристотель даже составил список «правильных рассуждений». Исторически принято делить все умозаключения на два типа - от конкретного к множественному (индукция) и наоборот (дедукция). Следует отметить, что типы доказательств от частного к общему и от общего к частному существуют только во взаимосвязи и не могут быть взаимозаменяемы.

Индукция в математике

Термин "индукция" (induction) имеет латинские корни и дословно переводится как «наведение». При пристальном изучении можно выделить структуру слова, а именно латинскую приставку - in- (обозначает направленное действие внутрь или нахождение внутри) и -duction - введение. Стоит отметить, что существует два вида - полная и неполная индукции. Полную форму характеризуют выводы, сделанные на основании изучения всех предметов некоторого класса.

Неполную - выводы, применяемые ко всем предметам класса, но сделанные на основании изучения только некоторых единиц.

Полная математическая индукция - умозаключение, базирующееся на общем выводе обо всем классе каких-либо предметов, функционально связанных отношениями натурального ряда чисел на основании знания этой функциональной связи. При этом процесс доказательства проходит в три этапа:

  • на первом доказывается правильность положения математической индукции. Пример: f = 1, индукции;
  • следующий этап строится на предположении о правомерности положения для всех натуральных чисел. То есть, f=h, это предположение индукции;
  • на третьем этапе доказывается справедливость положения для числа f=h+1, на основании верности положения предыдущего пункта - это индукционный переход, или шаг математической индукции. Примером может служить так называемый если падает первая косточка в ряду (базис), то упадут все косточки в ряду (переход).

И в шутку, и всерьез

Для простоты восприятия примеры решения методом математической индукции обличают в форму задач-шуток. Таковой является задача «Вежливая очередь»:

  • Правила поведения запрещают мужчине занимать очередь перед женщиной (в такой ситуации ее пропускают вперед). Исходя из этого утверждения, если крайний в очереди - мужчина, то и все остальные - мужчины.

Ярким примером метода математической индукции является задача «Безразмерный рейс»:

  • Требуется доказать, что в маршрутку помещается любая численность людей. Правдиво утверждение, что один человек может разместиться внутри транспорта без затруднений (базис). Но как бы ни была заполнена маршрутка, 1 пассажир в нее всегда поместится (шаг индукции).

Знакомые окружности

Примеры решения методом математической индукции задач и уравнений встречаются довольно часто. Как иллюстрацию такого подхода, можно рассмотреть следующую задачу.

Условие : на плоскости размещено h окружностей. Требуется доказать, что при любом расположении фигур образуемая ими карта может быть правильно раскрашена двумя красками.

Решение : при h=1 истинность утверждения очевидна, поэтому доказательство будет строиться для количества окружностей h+1.

Примем допущение, что утверждение достоверно для любой карты, а на плоскости задано h+1 окружностей. Удалив из общего количества одну из окружностей, можно получить правильно раскрашенную двумя красками (черной и белой) карту.

При восстановлении удаленной окружности меняется цвет каждой области на противоположный (в указанном случае внутри окружности). Получается карта, правильно раскрашенная двумя цветами, что и требовалось доказать.

Примеры с натуральными числами

Ниже наглядно показано применение метода математической индукции.

Примеры решения:

Доказать, что при любом h правильным будет равенство:

1 2 +2 2 +3 2 +…+h 2 =h(h+1)(2h+1)/6.

1. Пусть h=1, значит:

R 1 =1 2 =1(1+1)(2+1)/6=1

Из этого следует, что при h=1 утверждение правильно.

2. При допущении, что h=d, получается уравнение:

R 1 =d 2 =d(d+1)(2d+1)/6=1

3. При допущении, что h=d+1, получается:

R d+1 =(d+1) (d+2) (2d+3)/6

R d+1 = 1 2 +2 2 +3 2 +…+d 2 +(d+1) 2 = d(d+1)(2d+1)/6+ (d+1) 2 =(d(d+1)(2d+1)+6(d+1) 2)/6=(d+1)(d(2d+1)+6(k+1))/6=

(d+1)(2d 2 +7d+6)/6=(d+1)(2(d+3/2)(d+2))/6=(d+1)(d+2)(2d+3)/6.

Таким образом, справедливость равенства при h=d+1 доказана, поэтому утверждение верно для любого натурального числа, что и показано в примере решения математической индукцией.

Задача

Условие : требуется доказательство того, что при любом значении h выражение 7 h -1 делимо на 6 без остатка.

Решение :

1. Допустим, h=1, в этом случае:

R 1 =7 1 -1=6 (т.е. делится на 6 без остатка)

Следовательно, при h=1 утверждение является справедливым;

2. Пусть h=d и 7 d -1 делится на 6 без остатка;

3. Доказательством справедливости утверждения для h=d+1 является формула:

R d +1 =7 d +1 -1=7∙7 d -7+6=7(7 d -1)+6

В данном случае первое слагаемое делится на 6 по допущению первого пункта, а второе слагаемое равно 6. Утверждение о том, что 7 h -1 делимо на 6 без остатка при любом натуральном h - справедливо.

Ошибочность суждений

Часто в доказательствах используют неверные рассуждения, в силу неточности используемых логических построений. В основном это происходит при нарушении структуры и логики доказательства. Примером неверного рассуждения может служить такая иллюстрация.

Задача

Условие : требуется доказательство того, что любая куча камней - не является кучкой.

Решение :

1. Допустим, h=1, в этом случае в кучке 1 камень и утверждение верно (базис);

2. Пусть при h=d верно, что куча камней - не является кучкой (предположение);

3. Пусть h=d+1, из чего следует, что при добавлении еще одного камня множество не будет являться кучкой. Напрашивается вывод, что предположение справедливо при всех натуральных h.

Ошибка заключается в том, что нет определения, какое количество камней образует кучку. Такое упущение называется поспешным обобщением в методе математической индукции. Пример это ясно показывает.

Индукция и законы логики

Исторически сложилось так, что всегда "шагают рука об руку". Такие научные дисциплины как логика, философия описывают их в виде противоположностей.

С точки зрения закона логики в индуктивных определениях просматривается опора на факты, а правдивость посылок не определяет правильность получившегося утверждения. Зачастую получаются умозаключения с определенной долей вероятности и правдоподобности, которые, естественно, должны быть проверены и подтверждены дополнительными исследованиями. Примером индукции в логике может быть утверждение:

В Эстонии - засуха, в Латвии - засуха, в Литве - засуха.

Эстония, Латвия и Литва - прибалтийские государства. Во всех прибалтийских государствах засуха.

Из примера можно заключить, что новую информацию или истину нельзя получить при помощи метода индукции. Все, на что можно рассчитывать - это некоторая возможная правдивость выводов. Причем, истинность посылок не гарантирует таких же заключений. Однако данный факт не обозначает, что индукция прозябает на задворках дедукции: огромное множество положений и научных законов обосновываются при помощи метода индукции. Примером может служить та же математика, биология и другие науки. Связано это по большей части с методом полной индукции, но в некоторых случаях применима и частичная.

Почтенный возраст индукции позволил ей проникнуть практически во все сферы деятельности человека - это и наука, и экономика, и житейские умозаключения.

Индукция в научной среде

Метод индукции требует щепетильного отношения, поскольку слишком многое зависит от количества изученных частностей целого: чем большее число изучено, тем достовернее результат. Исходя из этой особенности, научные законы, полученные методом индукции, достаточно долго проверяются на уровне вероятностных предположений для вычленения и изучения всех возможных структурных элементов, связей и воздействий.

В науке индукционное заключение основывается на значимых признаках, с исключением случайных положений. Данный факт важен в связи со спецификой научного познания. Это хорошо видно на примерах индукции в науке.

Различают два вида индукции в научном мире (в связи со способом изучения):

  1. индукция-отбор (или селекция);
  2. индукция - исключение (элиминация).

Первый вид отличается методичным (скрупулезным) отбором образцов класса (подклассов) из разных его областей.

Пример индукции этого вида следующий: серебро (или соли серебра) очищает воду. Вывод основывается на многолетних наблюдениях (своеобразный отбор подтверждений и опровержений - селекция).

Второй вид индукции строится на выводах, устанавливающих причинные связи и исключающих обстоятельства, не отвечающие ее свойствам, а именно всеобщность, соблюдение временной последовательности, необходимость и однозначность.

Индукция и дедукция с позиции философии

Если взглянуть на историческую ретроспективу, то термин "индукция" впервые был упомянут Сократом. Аристотель описывал примеры индукции в философии в более приближенном терминологическом словаре, но вопрос неполной индукции остается открытым. После гонений на аристотелевский силлогизм индуктивный метод стал признаваться плодотворным и единственно возможным в естествознании. Отцом индукции как самостоятельного особого метода считают Бэкона, однако ему не удалось отделить, как того требовали современники, индукцию от дедуктивного метода.

Дальнейшей разработкой индукции занимался Дж. Милль, который рассматривал индукционную теорию с позиции четырех основных методов: согласия, различия, остатков и соответствующих изменений. Неудивительно, что на сегодняшний день перечисленные методы при их детальном рассмотрении являются дедуктивными.

Осознание несостоятельности теорий Бэкона и Милля привело ученых к исследованию вероятностной основы индукции. Однако и здесь не обошлось без крайностей: были предприняты попытки свести индукцию к теории вероятности со всеми вытекающими последствиями.

Вотум доверия индукция получает при практическом применении в определенных предметных областях и благодаря метрической точности индуктивной основы. Примером индукции и дедукции в философии можно считать Закон всемирного тяготения. На дату открытия закона Ньютону удалось проверить его с точностью в 4 процента. А при проверке спустя более двухсот лет правильность была подтверждена с точностью до 0,0001 процента, хотя проверка велась все теми же индуктивными обобщениями.

Современная философия больше внимания уделяет дедукции, что продиктовано логичным желанием вывести из уже известного новые знания (или истины), не обращаясь к опыту, интуиции, а оперируя «чистыми» рассуждениями. При обращении к истинным посылкам в дедуктивном методе во всех случаях на выходе получается истинное утверждение.

Эта очень важная характеристика не должна затмевать ценность индуктивного метода. Поскольку индукция, опираясь на достижения опыта, становится и средством его обработки (включая обобщение и систематизацию).

Применение индукции в экономике

Индукция и дедукция давно используются как методы исследования экономики и прогнозирования ее развития.

Спектр использования метода индукции достаточно широк: изучение выполнения прогнозных показателей (прибыли, амортизация и т. д.) и общая оценка состояния предприятия; формирование эффективной политики продвижения предприятия на основе фактов и их взаимосвязей.

Тот же метод индукции применен в «картах Шухарта», где при предположении о разделении процессов на управляемые и неуправляемые утверждается, что рамки управляемого процесса малоподвижны.

Следует отметить, что научные законы обосновываются и подтверждаются при помощи метода индукции, а поскольку экономика является наукой, часто пользующейся математическим анализом, теорией рисков и статистическими данными, то совершенно неудивительно присутствие индукции в списке основных методов.

Примером индукции и дедукции в экономике может служить следующая ситуация. Увеличение цены на продукты питания (из потребительской корзины) и товары первой необходимости подталкивают потребителя к мысли о возникающей дороговизне в государстве (индукция). Вместе с тем, из факта дороговизны при помощи математических методов можно вывести показатели роста цен на отдельные товары или категории товаров (дедукция).

Чаще всего обращается к методу индукции управляющий персонал, руководители, экономисты. Для того чтобы можно было с достаточной правдивостью прогнозировать развитие предприятия, поведение рынка, последствия конкуренции, необходим индукционно-дедуктивный подход к анализу и обработке информации.

Наглядный пример индукции в экономике, относящийся к ошибочным суждениям:

  • прибыль компании сократилась на 30%;
    конкурирующая компания расширила линейку продукции;
    больше ничего не изменилось;
  • производственная политика конкурирующей компании стала причиной сокращения прибыли на 30%;
  • следовательно, требуется внедрить такую же производственную политику.

Пример является красочной иллюстрацией того, как неумелое использование метода индукции способствует разорению предприятия.

Дедукция и индукция в психологии

Поскольку существует метод, то, по логике вещей, имеет место и должным образом организованное мышление (для использования метода). Психология как наука, изучающая психические процессы, их формирование, развитие, взаимосвязи, взаимодействия, уделяет внимание «дедуктивному» мышлению, как одной из форм проявления дедукции и индукции. К сожалению, на страницах по психологии в сети Интернет практически отсутствует обоснование целостности дедуктивно-индуктивного метода. Хотя профессиональные психологи чаще сталкиваются с проявлениями индукции, а точнее - ошибочными умозаключениями.

Примером индукции в психологии, как иллюстрации ошибочных суждений, может служить высказывание: моя мать - обманывает, следовательно, все женщины - обманщицы. Еще больше можно почерпнуть «ошибочных» примеров индукции из жизни:

  • учащийся ни на что не способен, если получил двойку по математике;
  • он - дурак;
  • он - умный;
  • я могу все;

И многие другие оценочные суждения, выведенные на абсолютно случайных и, порой, малозначительных посылах.

Следует отметить: когда ошибочность суждений человека доходит до абсурда, появляется фронт работы для психотерапевта. Один из примеров индукции на приеме у специалиста:

«Пациент абсолютно уверен в том, что красный цвет несет для него только опасность в любых проявлениях. Как следствие, человек исключил из своей жизни данную цветовую гамму - насколько это возможно. В домашней обстановке возможностей для комфортного проживания много. Можно отказаться от всех предметов красного цвета или заменить их на аналоги, выполненные в другой цветовой гамме. Но в общественных местах, на работе, в магазине - невозможно. Попадая в ситуацию стресса, пациент каждый раз испытывает «прилив» абсолютно разных эмоциональных состояний, что может представлять опасность для окружающих».

Этот пример индукции, причем неосознанной, называется «фиксированные идеи». В случае если такое происходит с психически здоровым человеком, можно говорить о недостатке организованности мыслительной деятельности. Способом избавления от навязчивых состояний может стать элементарное развитие дедуктивного мышления. В иных случаях с такими пациентами работают психиатры.

Приведенные примеры индукции свидетельствуют о том, что «незнание закона не освобождает от последствий (ошибочных суждений)».

Психологи, работая над темой дедуктивного мышления, составили список рекомендаций, призванный помочь людям освоить данный метод.

Первым пунктом значится решение задач. Как можно было убедиться, та форма индукции, которая употребляется в математике, может считаться «классической», и использование этого метода способствует «дисциплинированности» ума.

Следующим условием развития дедуктивного мышления является расширение кругозора (кто ясно мыслит, тот ясно излагает). Данная рекомендация направляет «страждущих» в скарбницы наук и информации (библиотеки, сайты, образовательные инициативы, путешествия и т. д.).

Отдельно следует упомянуть о так называемой «психологической индукции». Этот термин, хотя и нечасто, можно встретить на просторах интернета. Все источники не дают хотя бы краткую формулировку определения этого термина, но ссылаются на «примеры из жизни», при этом выдавая за новый вид индукции то суггестию, то некоторые формы психических заболеваний, то крайние состояния психики человека. Из всего перечисленного понятно, что попытка вывести «новый термин», опираясь на ложные (зачастую не соответствующие действительности) посылки, обрекает экспериментатора на получение ошибочного (или поспешного) утверждения.

Следует отметить, что отсылка к экспериментам 1960 года (без указания места проведения, фамилий экспериментаторов, выборки испытуемых и самое главное - цели эксперимента) выглядит, мягко говоря, неубедительно, а утверждение о том, что мозг воспринимает информацию, минуя все органы восприятия (фраза «испытывает воздействие» в данном случае вписалась бы более органично), заставляет задуматься над легковерностью и некритичностью автора высказывания.

Вместо заключения

Царица наук - математика, не зря использует все возможные резервы метода индукции и дедукции. Рассмотренные примеры позволяют сделать вывод о том, что поверхностное и неумелое (бездумное, как еще говорят) применение даже самых точных и надежных методов приводит всегда к ошибочным результатам.

В массовом сознании метод дедукции ассоциируется со знаменитым Шерлоком Холмсом, который в своих логических построениях чаще использует примеры индукции, в нужных ситуациях пользуясь дедукцией.

В статье были рассмотрены примеры применения этих методов в различных науках и сферах жизнедеятельности человека.

Библиографическое описание: Баданин А. С., Сизова М. Ю. Применение метода математической индукции к решению задач на делимость натуральных чисел // Юный ученый. — 2015. — №2. — С. 84-86..04.2019).



В математических олимпиадах часто встречаются достаточно трудные задачи на доказательство делимости натуральных чисел. Перед школьниками возникает проблема: как найти универсальный математический метод, позволяющий решать подобные задачи?

Оказывается, большинство задач на доказательство делимости можно решать методом математической индукции, но в школьных учебниках уделяется очень мало внимания этому методу, чаще всего приводится краткое теоретическое описание и разбирается несколько задач.

Метод математической индукции мы находим в теории чисел. На заре теории чисел математики открыли многие факты индуктивным путем: Л. Эйлер и К. Гаусс рассматривали подчас тысячи примеров, прежде чем подметить числовую закономерность и поверить в нее. Но одновременно они понимали, сколь обманчивыми могут быть гипотезы, прошедшие «конечную» проверку. Для индуктивного перехода от утверждения, проверенного для конечного подмножества, к аналогичному утверждению для всего бесконечного множества необходимо доказательство. Такой способ предложил Блез Паскаль, который нашел общий алгоритм для нахождения признаков делимости любого целого числа на любое другое целое число (трактат «О характере делимости чисел).

Метод математической индукции используется, чтобы доказать путем рассуждений истинность некоего утверждения для всех натуральных чисел или истинность утверждения начиная с некоторого числа n.

Решение задач на доказательство истинности некоторого утверждения методом математической индукции состоит из четырех этапов (рис. 1):

Рис. 1. Схема решения задачи

1. Базис индукции . Проверяют справедливость утверждения для наименьшего из натуральных чисел, при котором утверждение имеет смысл.

2. Индукционное предположение . Предполагаем, что утверждение верно для некоторого значения k.

3. Индукционный переход . Доказываем, что утверждение справедливо для k+1.

4. Вывод . Если такое доказательство удалось довести до конца, то, на основе принципа математической индукции можно утверждать, что утверждение верно для любого натурального числа n.

Рассмотрим применение метода математической индукции к решению задач на доказательство делимости натуральных чисел.

Пример 1 . Доказать, что число 5 кратно 19, где n - натуральное число.

Доказательство:

1) Проверим, что эта формула верна при n = 1: число =19 кратно 19.

2) Пусть эта формула верна для n = k, т. е. число кратно 19.

Кратно 19. Действительно, первое слагаемое делится на 19 в силу предположения (2); второе слагаемое тоже делится на 19, потому что содержит множитель 19.

Пример 2. Доказать, что сумма кубов трех последовательных натуральных чисел делится на 9.

Доказательство:

Докажем утверждение: «Для любого натурального числа n выражение n 3 +(n+1) 3 +(n+2) 3 кратно 9.

1) Проверим, что эта формула верна при n = 1: 1 3 +2 3 +3 3 =1+8+27=36 кратно 9.

2) Пусть эта формула верна для n = k, т. е. k 3 +(k+1) 3 +(k+2) 3 кратно 9.

3) Докажем, что формула верна и для n = k + 1, т. е. (k+1) 3 +(k+2) 3 +(k+3) 3 кратно 9. (k+1) 3 +(k+2) 3 +(k+3) 3 =(k+1) 3 +(k+2) 3 + k 3 + 9k 2 +27 k+ 27=(k 3 +(k+1) 3 +(k+2) 3)+9(k 2 +3k+ 3).

Полученное выражение содержит два слагаемых, каждое из которых делится на 9, таким образом, сумма делится на 9.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Пример 3. Доказать, что при любом натуральном n число 3 2n+1 +2 n+2 делится на 7.

Доказательство:

1) Проверим, что эта формула верна при n = 1: 3 2*1+1 +2 1+2 = 3 3 +2 3 =35, 35 кратно 7.

2) Пусть эта формула верна для n = k, т. е. 3 2 k +1 +2 k +2 делится на 7.

3) Докажем, что формула верна и для n = k + 1, т. е.

3 2(k +1)+1 +2 (k +1)+2 =3 2 k +1 ·3 2 +2 k +2 ·2 1 =3 2 k +1 ·9+2 k +2 ·2=3 2 k +1 ·9+2 k +2 ·(9–7)=(3 2 k +1 +2 k +2)·9–7·2 k +2 .Т. к. (3 2 k +1 +2 k +2)·9 делится на 7 и 7·2 k +2 делится на 7, то и их разность делится на 7.

4) Оба условия принципа математической индукции выполнены, следовательно, предложение истинно при всех значениях n.

Многие задачи на доказательство в теории делимости натуральных чисел удобно решать с применением метода математической индукции, можно даже сказать, что решение задач данным методом вполне алгоритмизировано, достаточно выполнить 4 основных действия. Но универсальным этот метод назвать нельзя, т. к. присутствуют и недостатки: во-первых, доказывать можно только на множестве натуральных чисел, а во-вторых, доказывать можно только для одной переменной.

Для развития логического мышления, математической культуры этот метод является необходимым инструментом, ведь ещё великий русский математик А. Н. Колмогоров говорил: «Понимание и умение правильно применять принцип математической индукции, является хорошим критерием логической зрелости, которая совершенно необходима математику».

Литература:

1. Виленкин Н. Я. Индукция. Комбинаторика. - М.: Просвещение, 1976. - 48 с.

2. Генкин Л. О математической индукции. - М., 1962. - 36 с.

3. Соломинский И. С. Метод математической индукции. - М.: Наука, 1974. - 63с.

4. Шарыгин И. Ф. Факультативный курс по математике: Решение задач: Учеб.пособие для 10 кл. сред.шк. - М.: Просвещение, 1989. - 252 с.

5. Шень А. Математическая индукция. - М.: МЦНМО,2007.- 32 с.

Савельева Екатерина

В работе рассматривается применение метода математической индукции в решении задач на делимость, к суммированию рядов. Рассматриваются примеры применения метода математической индукции к доказательству неравенств и к решению геометрических задач. Работа иллюстрирована презентацией.

Скачать:

Предварительный просмотр:

Министерство науки и образования РФ

Государственное образовательное учреждение

средняя общеобразовательная школа № 618

По курсу: алгебра и начала анализа

Теме проектной работы

«Метод математической индукции и его применение к решению задач»

Работу выполнила : Савельева Е, 11В класс

Руководитель : Макарова Т.П., учитель математики ГОУ СОШ №618

1. Введение.

2.Метод математической индукции в решении задач на делимость.

3.Применение метода математической индукции к суммированию рядов.

4.Примеры применения метода математической индукции к доказательству неравенств.

5.Применение метода математической индукции к решению геометрических задач.

6.Список использованной литературы.

Введение

В основе всякого математического исследования лежат дедуктивный и индуктивный методы. Дедуктивный метод рассуждений - это рассуждение от общего к частному, т.е. рассуждение, исходным моментом которого является общий результат, а заключительным моментом - частный результат. Индукция применяется при переходе от частных результатов к общим, т.е. является методом, противоположным дедуктивному. Метод математической индукции можно сравнить с прогресс-сом. Мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению развивать свою мысль логически, а значит, сама природа предначертала ему размышлять индуктивно. Хотя и выросла область применения метода математической индукции, в школьной программе ему отводится мало времени.А ведь это так важно - уметь размышлять индуктивно. Применение этого принципа при решении задач и доказательстве теорем находится в одном ряду с рассмотрением в школьной практике и других математических принципов: исключенного третьего, включения-исключения, Дирихле и др. В этом реферате содержатся задачи из разных разделов математики, в которых основным инструментом является использование метода математической индукции. Говоря о важ-ности этого метода, А.Н. Колмогоров отмечал, что «понимание и умение применять принцип математической индукции является хорошим критерием зрелости, которая совершенно необходима математику». Метод индукции в широком его понимании состоит в переходе от частных наблюдений к универсальной, общей закономерности или обшей формулировке. В таком толковании метод — это, конечно, основной прием проведения исследований в любой экспериментальной естественнонаучной

деятельности человека. Метод (принцип) математической индукции в простейшей его форме применяется тогда, когда нужно доказать некоторое утверждение для всех натуральных чисел.

Задача 1. В свой статье «Как я стал математиком» А.Н. Колмогоров пишет: «Радость математического «открытия» я познал рано, подметив в возрасте пяти-шести лет закономерность

1 =1 2 ,

1 + 3 = 2 2 ,

1 + 3 + 5 = З 2 ,

1 + 3 + 5 + 7 = 4 2 и так далее.

В школе издавался журнал "Весенние ласточки". В нем мое открытие было опубликовано...»

Какое именно доказательство было приведено в этом журнале, мы не знаем, но началось все с частных наблюдений. Сама гипотеза, которая, наверняка, возникла после обнаружения этих частных равенств, состоит в том, что формула

1 + 3 + 5 + ... + (2n - 1) = п 2

верна при любом заданном числе п = 1, 2, 3, ...

Для доказательства этой гипотезы достаточно установить два факта. Во-первых, для п = 1 (и даже для п = 2, 3, 4) нужное утверждение верно. Во-вторых, предположим, что утверждение верно при п = к, и убедимся, что тогда оно верно и для п = к + 1:

1 + 3 + 5+…+ (2к - 1) + (2к + 1) = (1 + 3 + 5 + ... + (2к - 1)) + (2к + 1) = к 2 + (2к + 1) = (к + I) 2 .

Значит, доказываемое утверждение верно для всех значений п: для п = 1 оно верно (это проверено), а в силу второго факта — для п = 2, откуда для п = 3 (в силу того же, второго факта) и т.д.

Задача 2. Рассмотрим все возможные обыкновенные дроби с числителем 1 и любым (целым положи-

тельным) знаменателем: Доказать,что для любого п > 3 можно представить единицу в виде суммы п различных дробей такого вида.

Решение, Проверим сначала данное утверждение при п = 3; имеем:

Следовательно, базовое утверждение выполнено

Предположим теперь, что интересующее нас утверждение верно для какого-то числа к, и докажем, что оно верно и для следующего за ним числа к + 1. Другими словами, предположим, что существует представление

в котором k слагаемых и все знаменатели разные. Докажем, что тогда можно получить представление единицы в виде суммы из к + 1 дробей нужного вида. Будем считать, что дроби убывают, то есть знаменатели (в представлении единицы суммой к слагаемых) возрастают слева направо так, что т — наибольший из знаменателей. Мы получим нужное нам представление в виде суммы + 1)-й дроби, если разобьем одну дробь, например последнюю, на две. Это можно сделать, так как

И поэтому

Кроме того, все дроби остались различными, так как т было наибольшим знаменателем, а т + 1 > т , и

т(т + 1) > т.

Таким образом, нами установлено:

  1. при п = 3 данное утверждение верно;
  1. если интересующее нас утверждение верно для к,
    то оно верно и для к + 1.

На этом основании мы можем утверждать, что рассматриваемое утверждение верно для всех натуральных чисел, начиная с трех. Более того, из приведенного доказательства следует и алгоритм отыскания нужного разбиения единицы. (Какой это алгоритм? Представьте число 1 в виде суммы 4, 5, 7 слагаемых самостоятельно.)

При решении предыдущих двух задач были сделаны два шага. Первый шаг называют базисом индукции, второй — индуктивным переходом или шагом индукции. Второй шаг наиболее важен, и он включает в себя предположение (утверждение верно при п = к) и заключение (утверждение верно при п = к + 1). Сам параметр п называется параметром индукции. Эта логическая схема (прием), позволяющая заключить, что рассматриваемое утверждение верно для всех натуральных чисел (или для всех, начиная с некоторого), так как справедливы и базис, и переход, называется принципом математической индукции, на котором и основан метод математической индукции. Сам термин «индукция» происходит от латинского слова induktio (наведение), которое означает переход от единичного знания об отдельных предметах данного класса к общему выводу о всех предметах данного класса, что является одним из основных методов познания.

Принцип математической индукции, именно в привычной форме двух шагов, впервые появился в 1654 году в работе Блеза Паскаля «Трактат об арифметическом треугольнике», в которой индукцией доказывался простой способ вычисления числа сочетаний (биномиальных коэффициентов). Д. Пойа в книге цитирует Б. Паскаля с небольшими изменениями, данными в квадратных скобках:

«Несмотря на то, что рассматриваемое предложение [явная формула для биномиальных коэффициентов] содержит бесчисленное множество частных случаев, я дам для нее совсем короткое доказательство, основанное на двух леммах.

Первая лемма утверждает, что предположение верно для основания — это очевидно. [При п = 1 явная формула справедлива...]

Вторая лемма утверждает следующее: если наше предположение верно для произвольного основания [для произвольного тг], то оно будет верным и для следующего за ним основания [для п + 1].

Из этих двух лемм необходимо вытекает справедливость предложения для всех значений п. Действительно, в силу первой леммы оно справедливо для п = 1; следовательно, в силу второй леммы оно справедливо для п = 2; следовательно, опять-таки в силу второй леммы, оно справедливо для п = 3 и так до бесконечности».

Задача 3. Головоломка «Ханойские башни» состоит из трех стержней. На одном из стержней находится пирамидка (рис. 1), состоящая из нескольких колец разного диаметра, уменьшающихся снизу вверх

Рис 1

Эту пирамидку нужно переместить на один из других стержней, перенося каждый раз только одно кольцо и не помещая большее кольцо на меньшее. Можно ли это сделать?

Решение. Итак, нам необходимо ответить на вопрос: можно ли переместить пирамидку, состоящую из п колец разного диаметра, с одного стержня на другой, соблюдая правила игры? Теперь задача нами, как говорят, параметризована (введено в рассмотрение натуральное число п), и ее можно решать методом математической индукции.

  1. База индукции. При п = 1 все ясно, так как пирамидку из одного кольца очевидно можно переместить на любой стержень.
  2. Шаг индукции. Предположим, что мы умеем перемещать любые пирамидки с числом колец п = к.
    Докажем, что тогда мы сможем переместить и пира мидку с п = к + 1.

Пирамидку из к колец, лежащих на самом большом + 1)-м кольце, мы можем, согласно предположению, переместить на любой другой стержень. Сделаем это. Неподвижное + 1)-е кольцо не будет нам мешать провести алгоритм перемещения, так как оно самое большое. После перемещения к колец, переместим это самое большое + 1)-е кольцо на оставшийся стержень. И затем опять применим известный нам по индуктивному предположению алгоритм перемещения к колец, и переместим их на стержень с лежащим внизу + 1)-м кольцом. Таким образом, если мы умеем перемещать пирамидки с к кольцами, то умеем перемещать пирамидки и с к + 1 кольцами. Следовательно, согласно принципу математической индукции, всегда можно переместить нужным образом пирамидку, состоящую из п колец, где п > 1.

Метод математической индукции в решении задач на делимость.

С помощью метода математической индукции можно доказывать различные утверждения, касающиеся делимости натуральных чисел.

Задача 4 . Если n - натуральное число, то число четное.

При n=1 наше утверждение истинно: - четное число. Предположим, что - четное число. Так как, a 2k - четное число, то и четное. Итак, четность доказана при n=1, из четности выведена четность.Значит, четно при всех натуральных значениях n.

Задача 3. Доказать, что число З 3 + 3 - 26n — 27 при произвольном натуральном п делится на 26 2 без остатка.

Решение. Предварительно докажем по индукции вспомогательное утверждение, что 3 3n+3 — 1 делится на 26 без остатка при п > 0.

  1. База индукции. При п = 0 имеем: З 3 - 1 = 26 —делится на 26.

Шаг индукции. Предположим, что 3 3n + 3 - 1 делится на 26 при п = к, и докажем, что в этом случае утверждение будет верно при п = к + 1. Так как 3

то из индуктивного предположения заключаем, что число 3 3k + 6 - 1 делится на 26.

Теперь докажем утверждение, сформулированное в условии задачи. И снова по индукции.

  1. База индукции. Очевидно, что при п = 1 утверждение верно: так как 3 3+3 - 26 - 27 = 676 = 26 2 .
  2. Шаг индукции. Предположим, что при п = к
    выражение 3 3k + 3 - 26k - 27 делится на 26 2 без остатка, и докажем, что утверждение верно при п = к + 1,
    то есть что число

делится на 26 2 без остатка. В последней сумме оба слагаемых делятся без остатка на 26 2 . Первое — потому что мы доказали делимость выражения, стоящего в скобках, на 26; второе — по предположению индукции. В силу принципа математической индукции, нужное утверждение полностью доказано.

Применение метода математической индукции к суммированию рядов.

Задача 5. Доказать формулу

N - натуральное число.

Решение.

При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.

Предположим, что формула верна при n=k, т.е.

Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим

Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1. Это утверждение справедливо при любом натуральном значении k. Итак, второе условие принципа математической индукции тоже выполнено. Формула доказана.

Задача 6. На доске написаны два числа: 1,1. Вписав между числами их сумму, мы получим числа 1, 2, 1. Повторив эту операцию еще раз, получим числа 1, 3, 2, 3, 1. После трех операций будут числа 1, 4, 3, 5, 2, 5, 3, 4, 1. Какова будет сумма всех чисел на доске после 100 операций?

Решение. Выполнять все 100 операций было бы очень трудоемким и долгим занятием. Значит, нужно попытаться найти какую-то общую формулу для суммы S чисел после п операций. Посмотрим на таблицу:

Заметили ли вы здесь какую-нибудь закономерность? Если нет, можно сделать еще один шаг: после четырех операций будут числа

1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1,

сумма которых S 4 равна 82.

В действительности можно не выписывать числа, а сразу сказать, как изменится сумма после добавления новых чисел. Пусть сумма была равна 5. Какой она станет, когда добавятся новые числа? Разобьем каждое новое число в сумму двух старых. Например, от 1, 3, 2, 3, 1 мы переходим к 1,

1 + 3, 3, 3 + 2, 2, 2 + 3, 3, 3 + 1, 1.

То есть каждое старое число (кроме двух крайних единиц) входит теперь в сумму три раза, поэтому новая сумма равна 3S - 2 (вычитаем 2, чтобы учесть недостающие единицы). Поэтому S 5 = 3S 4 - 2 = 244, и вообще

Какова же общая формула? Если бы не вычитание двух единиц, то каждый раз сумма увеличивалась бы в три раза, как в степенях тройки (1, 3, 9, 27, 81, 243, ...). А наши числа, как теперь видно, на единицу больше. Таким образом, можно предположить, что

Попробуем теперь доказать это по индукции.

База индукции. Смотри таблицу (для п = 0, 1, 2, 3).

Шаг индукции. Предположим, что

Докажем тогда, что S к + 1 = З к + 1 + 1.

Действительно,

Итак, наша формула доказана. Из нее видно, что после ста операций сумма всех чисел на доске будет равна З 100 + 1.

Рассмотрим один замечательный пример применения принципа математической индукции, в котором сначала нужно ввести два натуральных параметра и затем провести индукцию по их сумме.

Задача 7. Доказать, что если = 2, х 2 = 3 и для всякого натурального п > 3 имеет место соотношение

х п = Зх п - 1 - 2х п - 2 ,

то

2 п - 1 + 1, п = 1, 2, 3, ...

Решение. Заметим, что в этой задаче исходная последовательность чисел {х п } определяется по индукции, поскольку члены нашей последовательности, кроме двух первых, задаются индуктивно, то есть через предыдущие. Так заданные последовательности называют рекуррентными, и в нашем случае эта последовательность определяется (заданием первых двух ее членов) единственным образом.

База индукции. Она состоит из проверки двух утверждений: при п = 1 и п = 2.В обоих случаях утверждение справедливо по условию.

Шаг индукции. Предположим, что для п = к - 1 и п = к утверждение выполнено, то есть

Докажем тогда справедливость утверждения для п = к + 1. Имеем:

х 1 = 3(2 + 1)- 2(2 + 1) = 2+1, что и требовалось доказать.

Задача 8. Доказать, что любое натуральное число можно представить в виде суммы нескольких различных членов рекуррентной последовательности чисел Фибоначчи:

при к > 2.

Решение. Пусть п — натуральное число. Будем проводить индукцию по п.

База индукции. При п = 1 утверждение справедливо, поскольку единица сама является числом Фибоначчи.

Шаг индукции. Предположим, что все натуральные числа, меньшие некоторого числа п, можно представить в виде суммы нескольких различных членов последовательности Фибоначчи. Найдем наибольшее число Фибоначчи F т , не превосходящее п; таким образом, F т п и F т +1 > п.

Поскольку

По предположению индукции число п- F т может быть представлено в виде суммы 5 нескольких различных членов последовательности Фибоначчи, причем из последнего неравенства следует, что все члены последовательности Фибоначчи, участвующие в сумме 8, меньше F т . Поэтому разложение числа п = 8 + F т удовлетворяет условию задачи.

Примеры применения метода математической индукции к доказательству неравенств.

Задача 9. (Неравенство Бернулли.) Докажите, что при х > -1, х 0, и при целом п > 2 справедливо неравенство

(1 + х) п > 1 + хп.

Решение. Доказательство снова будем проводить по индукции.

1. База индукции. Убедимся в справедливости неравенства при п = 2. Действительно,

(1 + х) 2 = 1 + 2х + х 2 > 1 + 2х.

2. Шаг индукции. Предположим, что для номера п = к утверждение справедливо, то есть

(1 + х) к > 1 + хк,

Где к > 2. Докажем его при п = к + 1. Имеем: (1 + х) к + 1 = (1 + х) к (1 + х)>(1 + кх){1 + х) =

1 + (к + 1)х + кх 2 > 1 + (к + 1)х.

Итак, на основании принципа математической индукции можно утверждать, что неравенство Бернулли справедливо для любого п > 2.

Не всегда в условиях задач, решаемых с помощью метода математической индукции, бывает четко сформулирован общий закон, который нужно доказывать. Иногда приходится путем наблюдений частных случаев сначала обнаружить (догадаться), к какому общему закону они приводят, и только потом доказывать высказанную гипотезу методом математической индукции. Кроме того, переменная индукции может быть замаскированной, и прежде, чем решать задачу, необходимо определить, по какому параметру будет проводиться индукция. В качестве примеров рассмотрим следующие задачи.

Задача 10. Доказать, что

при любом натуральном п > 1.

Решение, Попробуем доказать это неравенство методом математической индукции.

Базис индукции проверяется без труда:1+

По предположению индукции

и нам остается доказать, что

Если воспользоваться индуктивным предположением, то мы будем утверждать, что

Хотя это равенство на самом деле верно, оно не дает нам решения задачи.

Попробуем доказать более сильное утверждение, чем это требуется в исходной задаче. А именно, докажем, что

Может показаться, что доказывать это утверждение методом индукции дело безнадежное.

Однако при п = 1 имеем: утверждение верно. Для обоснования индуктивного шага предположим, что

и докажем тогда, что

Действительно,

Таким образом, нами доказано более сильное утверждение, из которого сразу же следует утверждение, содержащееся в условии задачи.

Поучительным здесь является то, что хотя нам и пришлось доказывать более сильное утверждение, чем это требуется в задаче, но мы могли пользоваться и более сильным предположением в индуктивном шаге. Этим и объясняется, что прямолинейное применение принципа математической индукции не всегда приводит к цели.

Ситуация, возникшая при решении задачи, получила название парадокса изобретателя. Сам парадокс состоит в том, что более сложные планы могут быть реализованы с большим успехом, если они базируются на более глубоком понимании существа дела.

Задача 11. Докажите, что 2 т + п - 2 тп при любых натуральных тип.

Решение. Здесь мы имеем два параметра. Поэтому можно попробовать провести так называемую двойную индукцию (индукция внутри индукции).

Будем проводить индуктивное рассуждение по п.

1. База индукции по п. При п = 1 нужно проверить, что 2 т ~ 1 > т. Для доказательства этого неравенства воспользуемся индукцией по т.

а) База индукции по т. При т = 1 выполняется
равенство, что допустимо.

б) Шаг индукции по т. Предположим, что при т = к утверждение верно, то есть 2 к ~ 1 > к. Тогда до
кажем, что утверждение будет верным и при
т = к + 1.
Имеем:

при натуральных к.

Таким образом, неравенство 2 выполняется при любом натуральном т.

2. Шаг индукции по п. Выберем и зафиксируем какое-нибудь натуральное число т. Предположим, что при п = I утверждение справедливо (при фиксированном т), то есть 2 т +1 ~ 2 > т1, и докажем, что тогда утверждение будет справедливым и при п = l + 1.
Имеем:

при любых натуральных т и п.

Следовательно, на основании принципа математической индукции (по п) утверждение задачи верно при любых п и при любом фиксированном т. Таким образом, данное неравенство выполняется при любых натуральных тип.

Задача 12. Пусть т, п и к — натуральные числа, причем т > п. Какое из двух чисел больше:

В каждом выражении к знаков квадратного корня, т и п чередуются.

Решение. Докажем сначала некоторое вспомогательное утверждение.

Лемма. При любых натуральных т и п (т > п) и неотрицательном (не обязательно целом) х справедливо неравенство

Доказательство. Рассмотрим неравенство

Это неравенство справедливо, так как оба сомножителя в левой части положительны. Раскрывая скобки и преобразовывая, получаем:

Извлекая квадратный корень из обеих частей последнего неравенства, получим утверждение леммы. Итак, лемма доказана.

Перейдем теперь к решению задачи. Обозначим первое из данных чисел через а, а второе — через Ь к . Докажем, что а при любом натуральном к. Доказательство будем проводить методом математической индукции отдельно для четных и нечетных к.

База индукции. При к = 1 имеем неравенство

у[т > у/п , справедливое в силу того, что т > п. При к = 2 требуемое получается из доказанной леммы подстановкой х = 0.

Шаг индукции. Предположим, при некотором к неравенство а >b к справедливо. Докажем, что

Из предположения индукции и монотонности квадратного корня имеем:

С другой стороны, из доказанной леммы следует,

Объединяя два последних неравенства, получаем:

Согласно принципу математической индукции, утверждение доказано.

Задача 13. (Неравенство Коши.) Докажите, что для любых положительных чисел..., а п справедливо неравенство

Решение. При п = 2 неравенство

о среднем арифметическом и среднем геометрическом (для двух чисел) будем считать известным. Пусть п= 2 , к = 1, 2, 3, ... и сначала проведем индукцию по к. База этой индукции имеет место Предположив теперь, что нужное неравенство уже установлено для п = 2 , докажем его для п = 2 . Имеем (применяя неравенство для двух чисел):

Следовательно, по индукционному предположению

Таким образом, индукцией по k мы доказали неравенство для всех п 9 являющихся степенью двойки.

Для доказательства неравенства для других значений п воспользуемся «индукцией вниз», то есть докажем, что если неравенство выполнено для произвольных неотрицательных п чисел, то оно справедливо также и для (п - 1)-го числа. Чтобы в этом убедиться, заметим, что по сделанному предположению для п чисел выполнено неравенство

то есть а г + а 2 + ... + а п _ х > (п — 1)А. Разделив обе части на п - 1, получим требуемое неравенство.

Итак, сначала мы установили, что неравенство имеет место для бесконечного числа возможных значений п, а затем показали, что если неравенство выполнено для п чисел, то оно справедливо и для (п - 1) числа. Отсюда теперь мы и заключаем, что неравенство Коти имеет место для набора из п любых неотрицательных чисел при любом п = 2, 3, 4, ...

Задача 14. (Д. Успенский.) Для любого треугольника АВС, у которого углы = САB, = СВА соизмеримы, имеют место неравенства

Решение. Углы и соизмеримы, а это (по определению) означает, что эти углы имеют общую меру, для которой = р, = (р, q— натуральные взаимно простые числа).

Воспользуемся методом математической индукции и проведем ее по сумме п = р + q натуральных взаимно простых чисел..

База индукции. При р + q = 2 имеем: р = 1 и q = 1. Тогда треугольник АВС равнобедренный, и нужные неравенства очевидны: они следуют из неравенства треугольника

Шаг индукции. Предположим теперь, что нужные неравенства установлены для р + q = 2, 3, ..., к — 1, где к > 2. Докажем, что неравенства справедливы и для р + q = к.

Пусть АВС — данный треугольник, у которого > 2. Тогда стороны АС и ВС не могут быть равными: пусть АС > ВС. Построим теперь, как на рисунке 2, равнобедренный треугольник АВС; имеем:

АС = DС и АD=АВ + ВD, следовательно,

2АС > АВ + ВD (1)

Рассмотрим теперь треугольник ВDС, углы которого также соизмеримы:

DСВ = (q - р), ВDС = p.

Рис. 2

Для этого треугольника выполнено индуктивное предположение, и поэтому

(2)

Складывая (1) и (2), имеем:

2AC+BD>

и поэтому

Из того же треугольника ВБС по предположению индукции заключаем, что

Учитывая предыдущее неравенство, заключаем, что

Таким образом, индуктивный переход получен, и утверждение задачи следует из принципа математической индукции.

Замечание. Утверждение задачи остается в силе и в том случае, когда углы а и р не являются соизмеримыми. В основе рассмотрения в общем случае уже приходится применять другой важный математический принцип — принцип непрерывности.

Задача 15. Несколько прямых делят плоскость на части. Доказать, что можно раскрасить эти части в белый

и черный цвета так, чтобы соседние части, имеющие общий отрезок границы, были разного цвета (как на рисунке 3 при п = 4).

рис 3

Решение. Воспользуемся индукцией по числу прямых. Итак, пусть п — число прямых, делящих нашу плоскость на части, п > 1.

База индукции. Если прямая одна (п = 1), то она делит плоскость на две полуплоскости, одну из которых можно раскрасить в белый цвет, а вторую в черный, и утверждение задачи верно.

Шаг индукции. Чтобы доказательство индуктивного перехода было более понятно, рассмотрим процесс добавления одной новой прямой. Если проведем вторую прямую (п = 2), то получим четыре части, которые можно раскрасить нужным образом, покрасив противоположные углы в один цвет. Посмотрим, что произойдет, если мы проведем третью прямую. Она поделит некоторые «старые» части, при этом появятся новые участки границы, по обе стороны которых цвет один и тот же (рис. 4).

Рис. 4

Поступим следующим образом: с одной стороны от новой прямой поменяем цвета — белый сделаем черным и наоборот; при этом те части, которые лежат по другую сторону от этой прямой, не перекрашиваем (рис. 5). Тогда эта новая раскраска будет удовлетворять нужным требованиям: с одной стороны прямой она уже была чередующейся (но с другими цветами), а с другой стороны она и была нужной. Для того чтобы части, имеющие общую границу, принадлежащую проведенной прямой, были окрашены в разные цвета, мы и перекрашивали части только с одной стороны от этой проведенной прямой.

Рис.5

Докажем теперь индуктивный переход. Предположим, что для некоторого п = к утверждение задачи справедливо, то есть все части плоскости, на которые она делится этими к прямыми, можно раскрасить в белый и черный цвета так, чтобы соседние части были разного цвета. Докажем, что тогда существует такая раскраска и для п = к + 1 прямых. Поступим аналогично случаю перехода от двух прямых к трем. Проведем на плоскости к прямых. Тогда, по предположению индукции, полученную «карту» можно раскрасить нужным образом. Проведем теперь + 1)-ю прямую и с одной стороны от нее поменяем цвета на противоположные. Таким образом, теперь + 1)-я прямая всюду разделяет участки разного цвета, при этом «старые» части, как мы уже видели, остаются правильно раскрашенными. Согласно принципу математической индукции, задача решена.

Задача 16. На краю пустыни имеются большой запас бензина и машина, которая при полной заправке может проехать 50 километров. В неограниченном количестве имеются канистры, в которые можно сливать бензин из бензобака машины и оставлять на хранение в любой точке пустыни. Доказать, что машина может проехать любое целочисленное расстояние, большее 50 километров. Канистры с бензином возить не разрешается, пустые можно возить в любом количестве.

Решение. Попытаемся доказать индукцией по п, что машина может отъехать на п километров от края пустыни. При п = 50 это известно. Осталось провести шаг индукции и объяснить, как проехать п = к + 1 километров, если известно, что п = к километров проехать можно.

Однако тут мы встречаемся с трудностью: после того как мы проехали к километров, бензина может не хватить даже на обратную дорогу (не говоря уже о хранении). И в данном случае выход состоит в усилении доказываемого утверждения (парадокс изобретателя). Будем доказывать, что можно не только проехать п километров, но и сделать сколь угодно большой запас бензина в точке на расстоянии п километров от края пустыни, оказавшись в этой точке после окончания перевозок.

База индукции. Пусть единица бензина — это количество бензина, необходимое для совершения одного километра пути. Тогда рейс на расстояние в 1 километр и обратно требует двух единиц бензина, поэтому мы можем оставить 48 единиц бензина в хранилище на расстоянии километра от края и вернуться за новой порцией. Таким образом, за несколько рейсов в хранилище можно сделать запас произвольного размера, который нам потребуется. При этом, чтобы создать 48 единиц запаса, мы расходуем 50 единиц бензина.

Шаг индукции. Предположим, что на расстоянии п = к от края пустыни можно запасти любое количество бензина. Докажем, что тогда можно создать хранилище на расстоянии п = к + 1 километров с любым заданным наперед запасом бензина и оказаться у этого хранилища в конце перевозок. Поскольку в точке п = к имеется неограниченный запас бензина, то (согласно базе индукции) мы можем за несколько рейсов в точку п = к + 1 сделать в точке п = к 4- 1 запас произвольного размера, который потребуется.

Истинность более общего утверждения, чем в условии задачи, теперь следует из принципа математической индукции.

Заключение

В частности, изучив метод математической индукции, я повысила свои знания в этой области математики, а также научилась решать задачи, которые раньше были мне не под силу.

В основном это были логические и занимательные задачи, т.е. как раз те, которые повышают интерес к самой математике как к науке. Решение таких задач становится занимательным занятием и может привлечь в математические лабиринты всё новых любознательных. По-моему, это является основой любой науки.

Продолжая изучать метод математической индукции, я постараюсь научиться применять его не только в математике, но и в решении проблем физики, химии и самой жизни.

Литература

1.Вuленкин ИНДУКЦИЯ. Комбинаторика. Пособие ДЛЯ учителей. М., Просвещение,

1976.-48 с.

2.Головина Л.И., Яглом И.М. Индукция в геометрии. - М.: Госуд. издат. литер. - 1956 - С.I00. Пособие по математике для поступающих в вузы/ Под ред. Яковлева Г.Н. Наука. -1981. - С.47-51.

3.Головина Л.И., Яглом ИМ. Индукция в геометрии. —
М.: Наука, 1961. — (Популярные лекции по математике.)

4. И.Т.Демидов,А.Н.Колмогоров, С.И.Шварцбург,О.С.Ивашев-Мусатов, Б.Е.Вейц. Учебное пособие / “Просвещение” 1975.

5.Р. Курант, Г Роббинс «Что такое математика?» Глава 1, § 2

6.Попа Д. Математика и правдоподобные рассуждения. — М,: Наука, 1975.

7.Попа Д. Математическое открытие. — М.: Наука,1976.

8.Рубанов И.С. Как обучать методу математической индукции/ Математика школе. - Nl. - 1996. - С.14-20.

9.Соминский И.С., Головина Л.И., Яглом ИМ. О методе математической индукции. — М.: Наука, 1977. — (Популярные лекции по математике.)

10.Соломинский И.С. Метод математической индукции. - М.: Наука.

63с.

11.Соломинский И.С., Головина Л.И., Яглом И.М. О математической индукции. - М.:Наука. - 1967. - С.7-59.

12.httр://ш.wikiреdiа.оrg/wiki

13.htt12:/ /www.rеfешtсоllесtiоп.ru/40 124.html