Какой тип связи в молекуле cl2. Определить тип химической связи: HCL, Na2S, NH3, I2, MnO2

Характеристики химических связей

Учение о химической связи составляет основу всей теоретической химии. Под химической связью понимают такое взаимодействие атомов, которое связывает их в молекулы, ионы, радикалы, кристаллы. Различают четыре типа химических связей: ионную, ковалентную, металлическую и водородную . Различные типы связей могут содержаться в одних и тех же веществах.

1. В основаниях: между атомами кислорода и водорода в гидроксогруппах связь полярная ковалентная, а между металлом и гидроксогруппой - ионная.

2. В солях кислородсодержащих кислот: между атомом неметалла и кислородом кислотного остатка - ковалентная полярная, а между металлом и кислотным остатком - ионная.

3. В солях аммония, метиламмония и т. д. между атомами азота и водорода - ковалентная полярная, а между ионами аммония или метиламмония и кислотным остатком - ионная.

4. В пероксидах металлов (например, Na 2 O 2) связь между атомами кислорода ковалентная неполярная, а между металлом и кислородом - ионная и т. д.

Причиной единства всех типов и видов химических связей служит их одинаковая химическая природа - электронно-ядерное взаимодействие. Образование химической связи в любом случае представляет собой результат электронно-ядерного взаимодействия атомов, сопровождающегося выделением энергии.


Способы образования ковалентной связи

Ковалентная химическая связь - это связь, возникающая между атомами за счет образования общих электронных пар.

Ковалентные соединения – обычно газы, жидкости или сравнитель­но низкоплавкие твердые вещества. Одним из редких исключений явля­ется алмаз, который плавится выше 3 500 °С. Это объясняется строением алмаза, который представляет собой сплошную решетку ковалентно связанных атомов углерода, а не совокупность отдельных молекул. Фак­тически любой кристалл алмаза, независимо от его размера, представля­ет собой одну огромную молекулу.

Ковалентная связь возникает при объединении электронов двух атомов неметаллов. Возникшая при этом структура называется молекулой.

Механизм образования такой связи может быть обменный и донорно-акцепторный.

В большинстве случаев два ковалентно связанных атома имеют раз­ную электроотрицательность и обобществленные электроны не принад­лежат двум атомам в равной степени. Большую часть времени они нахо­дятся ближе к одному атому, чем к другому. В молекуле хлороводорода, например, электроны, образующие ковалентную связь, располагаются ближе к атому хлора, поскольку его электроотрицательность выше, чем у водорода. Однако разница в способности притягивать электроны не столь велика, чтобы произошел полный перенос электрона с атома водо­рода на атом хлора. Поэтому связь между атомами водорода и хлора можно рассматривать как нечто среднее между ионной связью (полный перенос электрона) и неполярной ковалентной связью (симмет­ричное расположение пары электронов между двумя атомами). Частич­ный заряд на атомах обозначается греческой буквой δ. Такая связь называется полярной ковалентной связью, а о молеку­ле хлороводорода говорят, что она полярна, т. е. имеет положительно заряженный конец (атом водорода) и отрицательно заряженный конец (атом хлора).

1. Обменный механизм действует, когда атомы образуют общие электронные пары за счет объединения неспаренных электронов.

1) Н 2 - водород.

Связь возникает благодаря образованию общей электронной пары s-электронами атомов водорода (перекрыванию s-орбиталей).

2) HCl - хлороводород.

Связь возникает за счет образования общей электронной пары из s- и р-электронов (перекрывания s-р-орбиталей).

3) Cl 2: В молекуле хлора ковалентная связь образуется за счет непарных р-электронов (перекрывание р-р-орбиталей).

4) N 2: В молекуле азота между атомами образуются три общие электронные пары.

Донорно-акцепторный механизм образования ковалентной связи

Донор имеет электронную пару, акцептор - свободную орбиталь, которую эта пара может занять. В ионе аммония все четыре связи с атомами водорода ковалентные: три образовались благодаря созданию общих электронных пар атомом азота и атомами водорода по обменному механизму, одна - по донорно-акцепторному механизму. Ковалентные связи классифицируют по способу перекрывания электронных орбиталей, а также по смещению их к одному из связанных атомов. Химические связи, образующиеся в результате перекрывания электронных орбиталей вдоль линии связи, называются σ -связями (сигма-связями). Сигма-связь очень прочная.

р-орбитали могут перекрываться в двух областях, образуя ковалентную связь за счет бокового перекрывания.

Химические связи, образующиеся в результате «бокового» перекрывания электронных орбиталей вне линии связи, т. е. в двух областях, называются пи-связями.

По степени смещенности общих электронных пар к одному из связанных ими атомов ковалентная связь может быть полярной и неполярной. Ковалентную химическую связь, образующуюся между атомами с одинаковой электроотрицательностью, называют неполярной. Электронные пары не смещены ни к одному из атомов, т. к. атомы имеют одинаковую электроотрицательность - свойство оттягивать к себе валентные электроны от других атомов. Например,

т. е. посредством ковалентной неполярной связи об­разованы молекулы простых веществ-неметаллов. Ковалентную химическую связь между атома­ми элементов, электроотрицательности которых различаются, называют полярной.

Например, NH 3 - аммиак. Азот более электро­отрицательный элемент, чем водород, поэтому об­щие электронные пары смещаются к его атому.

Характеристики ковалентной связи: длина и энергия связи

Характерные свойства ковалентной связи - ее длина и энергия. Длина связи - это расстояние между ядрами атомов. Химическая связь тем проч­нее, чем меньше ее длина. Однако мерой прочности связи является энергия связи, которая определяет­ся количеством энергии, необходимой для разрыва связи. Обычно она измеряется в кДж/моль. Так, согласно опытным данным, длины связи молекул H 2 , Cl 2 и N 2 соответственно составляют 0,074, 0,198 и 0,109 нм, а энергии связи соответственно равны 436, 242 и 946 кДж/моль.

Ионы. Ионная связь

Для атома существует две основные возможности подчиниться прави­лу октета. Первая из них - образование ионной связи. (Вторая - образова­ние ковалентной связи, о ней речь пойдет ниже). При образовании ион­ной связи атом металла теряет электроны, а атом неметалла приобретает.

Представим себе, что «встречаются» два атома: атом металла I группы и атом неметалла VII группы. У атома металла на внешнем энергетическом уровне находится единственный электрон, а атому неметалла как раз не хватает именно одного электрона, чтобы его внешний уровень оказался завершенным. Первый атом легко отдаст второму свой далекий от ядра и слабо связанный с ним электрон, а второй предоставит ему свободное место на своем внешнем электронном уровне. Тогда атом, лишенный одного своего отрицательного заряда, станет положительно заряженной частицей, а второй превратится в отрицательно заряженную частицу благодаря полученному электрону. Такие частицы называются ионами.

Это химическая связь, возникающая между ионами. Цифры, показывающие число атомов или молекул, называются коэффициентами, а цифры, показывающие число атомов или ионов в молекуле, называют индексами.

Металлическая связь

Металлы обладают специфическими свойствами, отличающимися от свойств других веществ. Такими свойствами являются сравнительно высокие температуры плавления, способ­ность к отражению света, высокая тепло- и электропроводность. Эти особенности обязаны существованию в металлах особого вида связи - металлической связи.

Металлическая связь - связь между положительными иона­ми в кристаллах металлов, осуществляемая за счет притяжения электронов, свободно перемещающихся по кристаллу. Атомы большинства металлов на внешнем уровне содержат небольшое число электронов - 1, 2, 3. Эти электроны легко отрываются , и атомы при этом превращаются в положительные ионы. Оторвавшиеся электроны перемещаются от одного иона к другому, связывая их в единое целое. Соединяясь с ионами, эти электроны образуют временно атомы, потом снова отрываются и соединяются уже с другим ионом и т. д. Бесконечно происходит процесс, который схематически можно изобразить так:

Следовательно, в объеме металла атомы непрерывно превращаются в ионы и наоборот. Связь в металлах между ионами посредством обобществленных электронов называется металлической. Металлическая связь имеет некоторое сходство с ковалентной, поскольку основана на обобществлении внешних электронов. Однако при ковалентной связи обобществлены внешние непарные электроны только двух соседних атомов, в то время как при металлической связи в обобществлении этих электронов принимают участие все атомы. Именно поэтому кристаллы с ковалентной связью хрупкие, а с металлической, как правило, пластичны, электропроводны и имеют металлический блеск.

Металлическая связь характерна как для чи­стых металлов, так и для смесей различных ме­таллов - сплавов, находящихся в твердом и жид­ком состояниях. Однако в парообразном состоянии атомы металлов связаны между собой ковалентной связью (например, парами натрия заполняют лам­пы желтого света для освещения улиц больших городов). Пары металлов состоят из отдельных мо­лекул (одноатомных и двухатомных).

Металлическая связь отличается от ковалентной также и по прочности: ее энергия в 3-4 раза меньше энергии ковалентной связи.

Энергия связи - энергия, необходимая для разрыва хими­ческой связи во всех молекулах, составляющих один моль ве­щества. Энергии ковалентных и ионных связей обычно велики и составляют величины порядка 100-800 кДж/моль.

Водородная связь

Химическую связь между положительно поляризованными атомами водорода одной молекулы (или ее части) и отрицательно поляризованными атомами сильно электроотрицательных элементов , имеющих наподеленные электронные пары (F, O, N и реже S и Cl), другой молекулы (или ее части) называют водородной. Механизм образования водородной связи имеет частично электростатический, частично донорно-акцепторный характер .

Примеры межмолекулярной водородной связи:

При наличии такой связи даже низкомолекулярные вещества могут быть при обычных условиях жидкостями (спирт, вода) или легко сжижающимися газами (аммиак, фтороводород). В биополимерах - белках (вторичная структура) - имеется внутримолекулярная водородная связь между карбонильным кислородом и водородом аминогруппы:

Молекулы полинуклеотидов - ДНК (дезокси­рибонуклеиновая кислота) - представляют собой двойные спирали, в которых две цепи нуклеотидов связаны друг с другом водородными связями. При этом действует принцип комплементарности, т. е. эти связи образуются между определенными пара­ми, состоящими из пуринового и пиримидиново­го оснований: против аденинового нуклеотида (А) располагается тиминовый (Т), а против гуанинового (Г) - цитозиновый (Ц).

Вещества с водородной связью имеют молеку­лярные кристаллические решетки.

1.Щелочноземельные металлы относятся

5) к s– элементам

6) к p– элементам

7) к d– элементам

8) к f - элементам

2. Сколько электронов содержат на внешнем энергетическом уровне атомы щелочноземельных металлов

1)Один 2) два 3) три 4) четыре

3. В химических реакциях атомы алюминия проявляют

3) Окислительные свойства 2) кислотные свойства

4) 3) восстановительные свойства 4) основные свойства

4. Взаимодействие кальция с хлором относится к реакциям

1)Разложения 2) соединения 3) замещения 4) обмена

5. Молекулярная масса гидрокарбоната натрия равна:

1) 84 2) 87 3) 85 4) 86

3. Какой атом тяжелее - железа или кремния - и во сколько раз?

4.Определите относительные молекулярные массы простых веществ: водорода, кислорода, хлора, меди, алмаза(углерода). Вспомните, какие из них состоят из двухатомных молекул, а какие- из атомов.
5.рассчитайте относительную молекулярные массы следующих соединений углекислого газа СО2 серной кислоты Н2SO4 сахара C12H22O11 этиловоого спирта С2Н6О мрамора СаСРО3
6.В перекиси водорода на один атом кислорода приходится один атом водорода. Определите формулу прекиси водорода, если изветсо что её относительная молекулярная масса равна 34. Каково массовое соотношение водорода и кислорода в этом соединении?
7. Во сколько раз молекула углекислого газа тяжелее молекулы кислорода?

Помогите пожжжжжалуйста, задание 8 класса.

Задание №1

Из предложенного перечня выберите два соединения, в которых присутствует ионная химическая связь.

  • 1. Ca(ClO 2) 2
  • 2. HClO 3
  • 3. NH 4 Cl
  • 4. HClO 4
  • 5. Cl 2 O 7

Ответ: 13

Определить наличие ионного типа связи в соединении в подавляющем большинстве случаев можно по тому, что в состав его структурных единиц одновременно входят атомы типичного металла и атомы неметалла.

По этому признаку мы устанавливаем, что ионная связь имеется в соединении под номером 1 - Ca(ClO 2) 2 , т.к. в его формуле можно увидеть атомы типичного металла кальция и атомы неметаллов - кислорода и хлора.

Однако, больше соединений, содержащих одновременно атомы металла и неметалла, в указанном списке нет.

Среди указанных в задании соединений есть хлорид аммония, в нем ионная связь реализуется между катионом аммония NH 4 + и хлорид-ионом Cl − .

Задание №2

Из предложенного перечня выберите два соединения, в которых тип химической связи такой же, как в молекуле фтора.

1) кислород

2) оксид азота (II)

3) бромоводород

4) иодид натрия

Запишите в поле ответа номера выбранных соединений.

Ответ: 15

Молекула фтора (F 2) состоит из двух атомов одного химического элемента неметалла, поэтому химическая связь в данной молекуле ковалентная неполярная.

Ковалентная неполярная связь может быть реализована только между атомами одного и того же химического элемента неметалла.

Из предложенных вариантов ковалентный неполярный тип связи имеют только кислород и алмаз. Молекула кислорода является двухатомной, состоит из атомов одного химического элемента неметалла. Алмаз имеет атомное строение и в его структуре каждый атом углерода, являющегося неметаллом, связан с 4-мя другими атомами углерода.

Оксид азота (II) - вещество состоящее из молекул, образованных атомами двух разных неметаллов. Поскольку электроотрицательности разных атомов всегда различны, общая электронная пара в молекуле смещена к более электроотрицательному элементу, в данном случае к кислороду. Таким образом, связь в молекуле NO является ковалентной полярной.

Бромоводород также состоит из двухатомных молекул, состоящих из атомов водорода и брома. Общая электронная пара, образующая связь H-Br, смещена к более электроотрицательному атому брома. Химическая связь в молекуле HBr также является ковалентной полярной.

Иодид натрия - вещество ионного строения, образованное катионом металла и иодид-анионом. Связь в молекуле NaI образована за счет перехода электрона с 3s -орбитали атома натрия (атом натрия превращается в катион) на недозаполненную 5p -орбиталь атома иода (атом иода превращается в анион). Такая химическая связь называется ионной.

Задание №3

Из предложенного перечня выберите два вещества, между молекулами которых образуются водородные связи.

  • 1. C 2 H 6
  • 2. C 2 H 5 OH
  • 3. H 2 O
  • 4. CH 3 OCH 3
  • 5. CH 3 COCH 3

Запишите в поле ответа номера выбранных соединений.

Ответ: 23

Пояснение:

Водородные связи имеют место в веществах молекулярного строения, в которых присутствуют ковалетные связи H-O, H-N, H-F. Т.е. ковалентные связи атома водорода с атомами трех химических элементов с наивысшей электроотрицательностью.

Таким образом, очевидно, водородные связи есть между молекулами:

2) спиртов

3) фенолов

4) карбоновых кислот

5) аммиака

6) первичных и вторичных аминов

7) плавиковой кислоты

Задание №4

Из предложенного перечня выберите два соединения с ионной химической связью.

  • 1. PCl 3
  • 2. CO 2
  • 3. NaCl
  • 4. H 2 S
  • 5. MgO

Запишите в поле ответа номера выбранных соединений.

Ответ: 35

Пояснение:

Сделать вывод о наличии ионного типа связи в соединении в подавляющем большинстве случаев можно по тому, что в состав структурных единиц вещества одновременно входят атомы типичного металла и атомы неметалла.

По этому признаку мы устанавливаем, что ионная связь имеется в соединении под номером 3 (NaCl) и 5 (MgO).

Примечание*

Помимо указанного выше признака, о наличии ионной связи в соединении можно говорить, если в составе его структурной единицы содержится катион аммония (NH 4 +) или его органические аналоги - катионы алкиламмония RNH 3 + , диалкиламония R 2 NH 2 + , триалкиламмония R 3 NH + или тетраалкиламмония R 4 N + , где R - некоторый углеводородный радикал. Например, ионный тип связи имеет место в соединении (CH 3) 4 NCl между катионом (CH 3) 4 + и хлорид-ионом Cl − .

Задание №5

Из предложенного перечня выберите два вещества с одинаковым типом строения.

4) поваренная соль

Запишите в поле ответа номера выбранных соединений.

Ответ: 23

Задание №8

Из предложенного перечня выберите два вещества немолекулярного строения.

2) кислород

3) белый фосфор

5) кремний

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Задание №11

Из предложенного перечня выберите два вещества, в молекулах которых присутствует двойная связь между атомами углерода и кислорода.

3) формальдегид

4) уксусная кислота

5) глицерин

Запишите в поле ответа номера выбранных соединений.

Ответ: 34

Задание №14

Из предложенного перечня выберите два вещества с ионной связью.

1) кислород

3) оксид углерода (IV)

4) хлорид натрия

5) оксид кальция

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Задание №15

Из предложенного перечня выберите два вещества с таким же типом кристаллической решетки, как у алмаза.

1) кремнезем SiO 2

2) оксид натрия Na 2 O

3) угарный газ CO

4) белый фосфор P 4

5) кремний Si

Запишите в поле ответа номера выбранных соединений.

Ответ: 15

Задание №20

Из предложенного перечня выберите два вещества, в молекулах которых есть одна тройная связь.

  • 1. HCOOH
  • 2. HCOH
  • 3. C 2 H 4
  • 4. N 2
  • 5. C 2 H 2

Запишите в поле ответа номера выбранных соединений.

Ответ: 45

Пояснение:

Для того, чтобы найти правильный ответ, нарисуем структурные формулы соединений из представленного списка:

Таким образом, мы видим, что тройная связь имеется в молекулах азота и ацетилена. Т.е. правильные ответы 45

Задание №21

Из предложенного перечня выберите два вещества, в молекулах которых есть ковалентная неполярная связь.

«Химическая связь» - энергия разрушения решетки на ионы _Екул = Uреш. Основные положения метода МО. Типы перекрывания атомных АО. связывающих и разрыхляющих МО при комбинации атомных орбиталей s и s pz и pz px и px. H?C ? C?H. ? - Коэф-т отталкивания. Qэфф =. Ао. Основные теории химической связи.

«Типы химических связей» - Вещества с ионном связью, образуют ионную кристаллическую решетку. Атомы. Электроотрицательность. МОУ лицей №18 учитель химии Калинина Л.А. Ионы. Например: Na1+ и Cl1-, Li1+ и F1- Na1+ + Cl1- = Na(:Cl:) . Если е - присоединяются – ион заряжается отрицательно. Атомный каркас обладает высокой прочностью.

«Жизнь Менделеева» - 18 июля Д.И.Менделеев окончил Тобольскую гимназию. 9 августа 1850 - 20 июня 1855 время учебы в Главном Педагогическом институте. «Если не будешь знать имен, то умрет и познание вещей» К.Линей. Жизнь и деятельность Д.И.Менделеева. Иван Павлович Менделеев (1783 - 1847), отец ученого. Открытие периодического закона.

«Виды химической связи» - H3N. Al2O3. Строение вещества». H2S. MgO. H2. Cu. Mg S. CS2. I.Выпишите формулы веществ: 1.с К.Н.С. 2.с К.П.С. 3. с И.С. К.Н.С. NaF. C. К.П.С. Определите вид химической связи. Какая из молекул соответствует схеме: A A ?

«Менделеев» - Триады элементов Доберейнера. Газы. Труд. Жизнь и научный подвиг. Периодическая система элементов (длинная форма). «Закон октав» Ньюлендса. Научная деятельность. Растворы. Новый этап жизни. Второй вариант системы элементов Менделеева. Часть таблицы элементов Л. Мейера. Открытие периодического закона (1869).

«Жизнь и деятельность Менделеева» - Иван Павлович Менделеев (1783 - 1847), отец ученого. 1834, 27 января (6 февраля) – родился Д.И.Менделеев в городе Тобольске, в Сибири. 1907, 20 января (2 февраля) Д.И.Менделеев скончался от паралича сердца. Д.И. Менеделеева (Южно-Казахстанской области, города Шымкента). Промышленность. 18 июля 1849 году Д.И.Менделеев окончил Тобольскую гимназию.

Единой теории химической связи не существует, условно химическую связь делят на ковалентную (универсальный вид связи), ионную(частный случай ковалентной связи), металлическую и водородную.

Ковалентная связь

Образование ковалентной связи возможно по трем механизмам: обменному, донорно-акцепторному и дативному (Льюиса).

Согласно обменному механизму образование ковалентной связи происходит за счет обобществления общих электронных пар. При этом каждый атом стремится приобрести оболочку инертного газа, т.е. получить завершенный внешний энергетический уровень. Образование химической связи по обменному типу изображают с использованием формул Льюиса, в которых каждый валентный электрон атома изображают точками (рис. 1).

Рис. 1 Образование ковалентной связи в молекуле HCl по обменному механизму

С развитием теории строения атома и квантовой механики образование ковалентной связи представляют, как перекрывание электронных орбиталей (рис. 2).

Рис. 2. Образование ковалентной связи за счет перекрывания электронных облаков

Чем больше перекрывание атомных орбиталей, тем прочнее связь, меньше длина связи и больше ее энергия. Ковалентная связь может образовываться за счет перекрывания разных орбиталей. В результате перекрывания s-s, s-p орбиталей, а также d-d, p-p, d-p орбиталей боковыми лопастями происходит образование – связи. Перпендикулярно линии, связывающей ядра 2-х атомов образуется – связь. Одна – и одна – связь способны образовывать кратную (двойную) ковалентную связь, характерную для органических веществ класса алкенов, алкадиенов и др. Одна – и две – связи образуют кратную (тройную) ковалентную связь, характерную для органических веществ класса алкинов (ацетиленов).

Образование ковалентной связи по донорно-акцепторному механизму рассмотрим на примере катиона аммония:

NH 3 + H + = NH 4 +

7 N 1s 2 2s 2 2p 3

Атом азота имеет свободную неподеленную пару электронов (электроны не участвующие в образовании химических связей внутри молекулы), а катион водорода свободную орбиталь, поэтому они являются донором и акцептором электронов, соответственно.

Дативный механизм образования ковалентной связи рассмотрим на примере молекулы хлора.

17 Cl 1s 2 2s 2 2p 6 3s 2 3p 5

Атом хлора имеет и свободную неподеленную пару электронов и вакантные орбитали, следовательно, может проявлять свойства и донора и акцептора. Поэтому при образовании молекулы хлора, один атом хлора выступает в роли донора, а другой – акцептора.

Главными характеристиками ковалентной связи являются: насыщаемость (насыщенные связи образуются тогда, когда атом присоединяет к себе столько электронов, сколько ему позволяют его валентные возможности; ненасыщенные связи образуются, когда число присоединенных электронов меньше валентных возможностей атома); направленность (эта величина связана с геометрий молекулы и понятием «валентного угла» — угла между связями).

Ионная связь

Соединений с чистой ионной связью не бывает, хотя под этим понимают такое химически связанное состояние атомов, в котором устойчивое электронное окружение атома создается при полном переходе общей электронной плотности к атому более электроотрицательного элемента. Ионная связь возможна только между атомами электроотрицательных и электроположительных элементов, находящихся в состоянии разноименно заряженных ионов – катионов и анионов.

ОПРЕДЕЛЕНИЕ

Ионом называют электрически заряженные частицы, образуемые путем отрыва или присоединения электрона к атому.

При передаче электрона атомы металлов и неметаллов стремятся сформировать вокруг своего ядра устойчивую конфигурацию электронной оболочки. Атом неметалла создает вокруг своего ядра оболочку последующего инертного газа, а атом металла – предыдущего инертного газа (рис. 3).

Рис. 3. Образование ионной связи на примере молекулы хлорида натрия

Молекулы, в которых в чистом виде существует ионная связь встречаются в парообразном состоянии вещества. Ионная связь очень прочная, в связи с этим вещества с этой связью имеют высокую температуру плавления. В отличии от ковалентной для ионной связи не характерны направленность и насыщаемость, поскольку электрическое поле, создаваемое ионами, действует одинаково на все ионы за счет сферической симметрии.

Металлическая связью

Металлическая связь реализуется только в металлах – это взаимодействие, удерживающее атомы металлов в единой решетке. В образовании связи участвуют только валентные электроны атомов металла, принадлежащие всему его объему. В металлах от атомов постоянно отрываются электроны, которые перемещаются по всей массе металла. Атомы металла, лишенные электронов, превращаются в положительно заряженные ионы, которые стремятся принять к себе движущиеся электроны. Этот непрерывный процесс формирует внутри металла так называемый «электронный газ», который прочно связывает между собой все атомы металла (рис. 4).

Металлическая связь прочная, поэтому для металлов характерна высокая температура плавления, а наличие «электронного газа» придают металлам ковкость и пластичность.

Водородная связь

Водородная связь – это специфическое межмолекулярное взаимодействие, т.к. ее возникновение и прочность зависят от химической природы вещества. Она образуется между молекулами, в которых атом водорода связан с атомом, обладающим высокой электроотрицательностью (O, N, S). Возникновение водородной связи зависит от двух причин, во-первых, атом водорода, связанный с электроотрицательным атомом не имеет электронов и может легко внедряться в электронные облака других атомов, а, во-вторых, обладая валентной s-орбиталью, атом водорода способен принимать неподеленную пару электронов электроотрицательного атома и образовывать с ним связь по донорно акцепторному механизму.