Просто о сложном: что такое темная материя и где ее искать. Невидимый цемент вселенной День темной материи

Расчеты ученых показали, что Вселенная на 95% состоит из пока не исследованного людьми вещества: 70% приходится на темную энергию, а 25% - на темную материю. Предполагается, что первая представляет собой некое поле с ненулевой энергией, а вот вторая состоит из частиц, которые можно обнаружить и изучить.

Но не зря это вещество называют скрытой массой - его поиски длятся немалое время и сопровождаются жаркими дискуссиями среди физиков. Для того чтобы донести свои исследования до общественности, ЦЕРН даже инициировал День темной материи, который впервые отмечается сегодня, 31 октября.

Сторонники существования темной материи приводят довольно весомые аргументы, подтвержденные экспериментальными фактами. Ее признание началось в тридцатых годах XX века, когда швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники движутся вокруг общего центра. Как известно, скорость движения зависит от массы. Расчеты ученого показали, что истинная масса галактик должна быть намного больше, чем определенная в процессе наблюдений при помощи телескопов. Получалось, что довольно крупная часть галактик просто не видна нам. Следовательно, она состоит из материи, не отражающей и не поглощающей свет.

Вторым подтверждением существования скрытой массы является изменение света при прохождении через галактики. Дело в том, что любой обладающий массой объект искажает прямолинейный ход лучей света. Таким образом, темная материя внесет свои изменения в световую картину (изображение удаленного объекта), и та станет отличаться от картины, которая создавалась бы только видимым веществом. Существует десять свидетельств существования темной материи, но описанные два относятся к основным.

© 2012 The Authors Monthly Notices of the Royal Astronomical Society, 2012 RAS

Снимок скопления галактик. Линиями показаны "очертания" темной материи

Хотя доказательства существования темной материи достаточно убедительны, пока никто не нашел и не изучил частицы, из которых она состоит. Физики предполагают, что такая скрытность обусловлена двумя причинами. Первая заключается в том, что эти частицы обладают слишком высокой массой (связанной с энергией через формулу E=mc²), поэтому возможностей современных ускорителей просто не хватает для "рождения" такой частицы. Вторая причина заключается в очень малой вероятности появления темной материи. Возможно, мы не можем найти ее именно из-за того, что она крайне слабо взаимодействует с человеческим телом и известными нам частицами. Хотя темная материя повсюду (согласно расчетам) и ее частицы буквально проносятся через нас каждую секунду, мы просто этого не ощущаем.

Для обнаружения частиц темной материи ученые используют детекторы, которые расположены под Землей для минимизации лишних воздействий. Предполагается, что изредка частицы темной материи все же сталкиваются с атомными ядрами, передают им часть импульса, выбивают электроны и вызывают вспышки света. Частота таких столкновений зависит от вероятности взаимодействия частиц темной материи с ядром, их концентрации и относительной скорости (с учетом движения Земли вокруг Солнца). Но экспериментальные группы даже при обнаружении некоторого воздействия, отрицают, что данный отклик детектора вызвала темная материя. И только итальянская экспериментальная группа DAMA, работающая в подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов, предположительно связанных с движением Земли сквозь галактическую скрытую массу.

Детектор для обнаружения темной материи

В данном эксперименте на протяжении нескольких лет измеряются количество и энергия вспышек света внутри детектора. Исследователи доказали наличие слабых (около 2%) годичных колебаний скорости счета таких событий.

Хотя итальянская группа уверенно отстаивает надежность проведенных экспериментов, мнения ученых по этому поводу довольно неоднозначны. Основное слабое место результатов, полученных итальянской группой, - их неповторяемость. Например, когда открыли гравитационные волны, их засекали лаборатории по всему миру, тем самым подтверждая полученные другими группами данные. В случае с DAMA дело обстоит иначе - больше никто в мире не может похвастаться наличием таких же результатов! Конечно, есть возможность того, что у этой группы более мощные детекторы или свои методы, но такая уникальность эксперимента вызывает у некоторых исследователей сомнения в его достоверности.

"Пока нельзя точно сказать, к чему относятся данные, собранные в лаборатории Гран-Сассо. В любом случае группа из Италии предоставила положительный результат, а не отрицание чего-либо, что уже сенсация. Теперь найденным сигналам необходимо искать объяснение. И это прекрасный стимул к развитию самых разных теорий, в том числе посвященных созданию модели скрытой массы. Но даже если ученый пытается объяснить, почему полученные данные никоим образом не относятся к темной материи, это все равно может стать новым шагом в понимании Природы. В любом случае результат есть и надо продолжать работу. Но полностью согласиться, что темная материя найдена, лично я на данный момент не могу", - комментирует Константин Белоцкий, ведущий научный сотрудник Кафедры физики элементарных частиц НИЯУ "МИФИ".

Темная материя не излучает и не поглощает свет, практически не взаимодействует с «обычной» материей, ученым пока не удалось поймать ни одной «темной» частицы. Но без нее не могла бы существовать знакомая нам Вселенная, да и мы сами. В День темной материи, который отмечается 31 октября (физики решили, что - как раз подходящее время, чтобы устроить праздник в честь темной и неуловимой субстанции), N + 1 расспросил заведующего отделом теоретической астрофизики Астрокосмического центра ФИАН Андрея Дорошкевича о том, что такое темная материя и почему она так важна.

N + 1: Насколько ученые уверены сегодня, что темная материя действительно существует?

Андрей Дорошкевич: Главное свидетельство - это наблюдения флуктуаций реликтового излучения, то есть результаты, которые за последние 15 лет получили космические аппараты WMAP и « ».

Они с высокой точностью измеряли возмущение температуры космического микроволнового фона, то есть реликтового излучения. Эти возмущения сохранились с эпохи рекомбинации, когда ионизованный водород превратился в нейтральные атомы.

Эти измерения показали присутствие флуктуаций, очень небольших, примерно в одну десятитысячную кельвина. Но когда они стали сравнивать эти данные с теоретическими моделями, то обнаружили важные отличия, которые нельзя объяснить никак иначе, кроме как присутствием темной материи. Благодаря этому они с точностью до процентов смогли посчитать доли темной и обычной материи во Вселенной.

Распределение вещества во Вселенной (слева направо) до и после появления данных телескопа «Планк»


Ученые предпринимали множество попыток избавиться от невидимой и неощущаемой темной материи, создавались теории модифицированной гравитации, например MOND, которые пытаются объяснить наблюдаемые эффекты. Почему модели с темной материей предпочтительнее?

Ситуация очень простая: современная эйнштейновская теория гравитации хорошо выполняется на земных масштабах, спутники летают в строгом соответствии с этой теорией. И она очень хорошо выполняется на космологических масштабах. А все современные модели, которые изменяют гравитацию, не могут объяснить все. Они вносят новые постоянные в закон Ньютона, что позволяет объяснить эффекты присутствия темной материи на уровне галактик, но промахиваются на космологическом масштабе.

А может ли тут помочь открытие гравитационных волн? Может быть, оно поможет отбросить какие-то из теорий?

То, что сейчас измерили гравитационные волны - это громадный технический, а не научный успех. То, что они существуют, было известно 40 лет назад, когда было обнаружено (косвенно) гравитационное излучение от двойного пульсара. Наблюдения гравитационных волн еще раз подтвердили существование черных дыр, хотя мы в этом и раньше не сомневались, но теперь у нас тут есть более или менее прямое свидетельство.

Форма эффекта, изменения гравитационных волн в зависимости от мощности, могут нам дать очень полезную информацию, но нужно ждать еще лет пять-десять, пока у нас накопится достаточно данных для уточнения теорий гравитации.

Как ученые узнали о темной материи

История темной материи началась в 1933 году, когда астроном Фриц Цвикки исследовал распределение скоростей галактик в скоплении, расположенном в созвездии Волосы Вероники. Он обнаружил, что галактики в скоплении двигаются слишком быстро, и если принимать во внимание только видимое вещество, скопление не могло бы быть стабильным - галактики просто разбросало бы в разные стороны.

В статье , опубликованной 16 февраля 1933 года, Цвикки предположил, что их удерживает вместе невидимое тяготеющее вещество - Dunkle Materie.

Чуть позже несоответствие между «видимой» массой галактик и параметрами их движения подтвердили и другие астрономы.

В 1958 году советский астрофизик Виктор Амбарцумян предложил свое решение парадокса Цвикки. По его мнению, скопления галактик не содержат никакой невидимой материи, которая бы удерживала их гравитационно. Мы просто наблюдаем скопления в процессе распада. Однако большинство астрономов не приняло это объяснение, поскольку в этом случае срок жизни скоплений составлял бы не более одного миллиарда лет, а учитывая, что срок существования Вселенной в десять раз больше, к сегодняшнему дню скоплений просто бы не осталось.

Общепринятые представления о темной материи гласят, что она состоит из вимпов (WIMP), массивных частиц, почти не взаимодействующих с частицами обычной материи. Что можно сказать об их свойствах?

У них достаточно большая масса - и это почти все, даже точную массу мы назвать не можем. Они без столкновений пробегают большие расстояния, но возмущения плотности в них не затухают даже на сравнительно малых масштабах - и это единственное, что нам нужно сегодня для моделей.

Реликтовое излучение дает нам характеристики темной материи для больших масштабов, для масштабов скоплений галактик. Но чтобы «спуститься» на масштабы малых галактик, мы вынуждены пользоваться теоретическими моделями.

Само существование небольших галактик говорит о том, что даже в относительно небольших масштабах существовали неоднородности, возникшие вскоре после Большого взрыва. Такие неоднородности могут затухать, разглаживаться, но мы знаем точно, что они не затухли в масштабах маленьких галактик. Это говорит о том, что эти частицы темной материи должны обладать такими свойствами, чтобы эти возмущения сохранились.

Правильно ли говорить, что звезды могли возникать только благодаря темной материи?

Не совсем. Без темной материи не могли возникнуть галактики, а звезды не могут формироваться вне галактик. В отличие от темной материи, барионы всегда горячие, они взаимодействуют с реликтовым излучением. Поэтому самостоятельно они не могут собираться в звезды, гравитация барионов звездной массы не может преодолеть их давление.

Частицы темной материи действуют как невидимый цемент, который стягивает барионы в галактики, а затем уже в них начинается процесс образования звезд. Темной материи в шесть раз больше, чем барионов, она «руководит», а барионы только за ней тянутся.


Ксеноновый детектор частиц темной материи XENON1T

Коллаборация Xenon100

А много ли темной материи вокруг нас?

Она есть везде, вопрос только в том, сколько ее. Считается, что в нашей Галактике масса темной материи - несколько менее 10 процентов.

Но уже в окрестностях Галактики темной материи больше, мы можем видеть признаки присутствия вокруг как нашей, так и других звездных систем. Конечно, мы видим его благодаря барионам, мы их наблюдаем, и понимаем, что они «держатся» там только благодаря присутствию темной материи.

Как ученые ищут темную материю

С конца 80-х годов физики проводят эксперименты на установках глубоко под землей в попытках уловить столкновения отдельных частиц темной материи. За прошедшие 15 лет коллективная чувствительность этих экспериментов росла экспоненциально, удваиваясь в среднем каждый год. Две крупные коллаборации, XENON и PandaX-II, недавно запустили новые, еще более чувствительные детекторы.

Первая из них построила самый большой в мире детектор темной материи XENON1T. В нем используется 2000-килограммовая мишень из жидкого ксенона, помещенная в бак с водой высотой 10 метров. Все это находится под землей на глубине в 1,4 километра в Национальной лаборатории Гран-Сассо (Италия). Установка PandaX-II погребена на глубине 2,4 километра в китайской провинции Сычуань и содержит 584 килограмм жидкого ксенона.

Оба эксперимента используют ксенон, потому что он крайне инертен, а это помогает удерживать низкий уровень шума. Кроме того, ядра атомов ксенона относительно тяжелы (содержат в среднем 131 нуклон на ядро), что дает «бóльшую» мишень для частиц темной материи. Если одна из таких частиц столкнется с ядром атома ксенона, это породит слабую, но уловимую вспышку света (сцинтилляцию) и образование электрического заряда. Наблюдение даже небольшого числа таких событий может дать нам важные данные о природе темной материи.

Пока ни этим, ни каким либо другим экспериментам не удалось обнаружить частиц темной материи, но и это молчание может быть использовано для того, чтобы установить верхний предел вероятности столкновений частиц темной материи с частицами обычной.

Частицы темной материи могут образовывать скопления, как частицы обычной материи?

Могут, но весь вопрос в том, какой плотности. С точки зрения астрофизики и галактики - плотные объекты, их плотность составляет порядка одного протона на кубический сантиметр, и звезды - плотные объекты, с плотностью порядка грамма на кубический сантиметр. Но между ними 24 порядка разницы. Как правило, облака из темной материи имеют «галактическую» плотность.

Есть ли шансы у многочисленных по поиску частиц темной материи?

Они пытаются поймать взаимодействия отдельных частиц темной материи с атомами обычного вещества, как это делают с нейтрино. Но их поймать очень непросто, и не факт, что это вообще возможно.

Телескоп CAST (CERN Axion Solar Telescope) в ЦЕРНе ищет гипотетические частицы - аксионы, из которых может состоять темная материя.

Может быть, темная материя вообще состоит из так называемых «зеркальных» частиц , которые в принципе возможно наблюдать только по их гравитации. Гипотеза второй «зеркальной» Вселенной была предложена полвека назад, это своего рода удвоение реальности.

Реальные наблюдения у нас есть только из космологии.

Беседовал Сергей Кузнецов

МОСКВА, 31 окт — РИА Новости, Ольга Коленцова. Расчеты ученых показали, что Вселенная на 95% состоит из пока не исследованного людьми вещества: 70% приходится на темную энергию, а 25% — на темную материю. Предполагается, что первая представляет собой некое поле с ненулевой энергией, а вот вторая состоит из частиц, которые можно обнаружить и изучить. Но не зря это вещество называют скрытой массой — его поиски длятся немалое время и сопровождаются жаркими дискуссиями среди физиков. Для того чтобы донести свои исследования до общественности, ЦЕРН даже инициировал День темной материи, который впервые отмечается сегодня, 31 октября.

Сторонники существования темной материи приводят довольно весомые аргументы, подтвержденные экспериментальными фактами. Ее признание началось в тридцатых годах XX века, когда швейцарский астроном Фриц Цвикки измерил скорости, с которыми галактики скопления Волосы Вероники движутся вокруг общего центра. Как известно, скорость движения зависит от массы. Расчеты ученого показали, что истинная масса галактик должна быть намного больше, чем определенная в процессе наблюдений при помощи телескопов. Получалось, что довольно крупная часть галактик просто не видна нам. Следовательно, она состоит из материи, не отражающей и не поглощающей свет.

Вторым подтверждением существования скрытой массы является изменение света при прохождении через галактики. Дело в том, что любой обладающий массой объект искажает прямолинейный ход лучей света. Таким образом, темная материя внесет свои изменения в световую картину (изображение удаленного объекта), и та станет отличаться от картины, которая создавалась бы только видимым веществом. Существует десять свидетельств существования темной материи, но описанные два относятся к основным.

© 2012 The Authors Monthly Notices of the Royal Astronomical Society, 2012 RAS

© 2012 The Authors Monthly Notices of the Royal Astronomical Society, 2012 RAS

Хотя доказательства существования темной материи достаточно убедительны, пока никто не нашел и не изучил частицы, из которых она состоит. Физики предполагают, что такая скрытность обусловлена двумя причинами. Первая заключается в том, что эти частицы обладают слишком высокой массой (связанной с энергией через формулу E=mc² ), поэтому возможностей современных ускорителей просто не хватает для "рождения" такой частицы. Вторая причина заключается в очень малой вероятности появления темной материи. Возможно, мы не можем найти ее именно из-за того, что она крайне слабо взаимодействует с человеческим телом и известными нам частицами. Хотя темная материя повсюду (согласно расчетам) и ее частицы буквально проносятся через нас каждую секунду, мы просто этого не ощущаем.

Темная материя Вселенной "худеет", заявляют российские физики Количество темной материи во Вселенной уменьшилось примерно на 2-5%, что может объяснять расхождения в значении некоторых важных космологических параметров во времена Большого Взрыва и сегодня.

Для обнаружения частиц темной материи ученые используют детекторы, которые расположены под Землей для минимизации лишних воздействий. Предполагается, что изредка частицы темной материи все же сталкиваются с атомными ядрами, передают им часть импульса, выбивают электроны и вызывают вспышки света. Частота таких столкновений зависит от вероятности взаимодействия частиц темной материи с ядром, их концентрации и относительной скорости (с учетом движения Земли вокруг Солнца). Но экспериментальные группы даже при обнаружении некоторого воздействия, отрицают, что данный отклик детектора вызвала темная материя. И только итальянская экспериментальная группа DAMA, работающая в подземной лаборатории Гран-Сассо, сообщает о наблюдаемых годичных вариациях скорости счета сигналов, предположительно связанных с движением Земли сквозь галактическую скрытую массу.

© Фото: SuperCMDS Collaboration

В данном эксперименте на протяжении нескольких лет измеряются количество и энергия вспышек света внутри детектора. Исследователи доказали наличие слабых (около 2%) годичных колебаний скорости счета таких событий.

Хотя итальянская группа уверенно отстаивает надежность проведенных экспериментов, мнения ученых по этому поводу довольно неоднозначны. Основное слабое место результатов, полученных итальянской группой, — их неповторяемость. Например, когда открыли гравитационные волны, их засекали лаборатории по всему миру, тем самым подтверждая полученные другими группами данные. В случае с DAMA дело обстоит иначе — больше никто в мире не может похвастаться наличием таких же результатов! Конечно, есть возможность того, что у этой группы более мощные детекторы или свои методы, но такая уникальность эксперимента вызывает у некоторых исследователей сомнения в его достоверности.

"Пока нельзя точно сказать, к чему относятся данные, собранные в лаборатории Гран-Сассо. В любом случае группа из Италии предоставила положительный результат, а не отрицание чего-либо, что уже сенсация. Теперь найденным сигналам необходимо искать объяснение. И это прекрасный стимул к развитию самых разных теорий, в том числе посвященных созданию модели скрытой массы. Но даже если ученый пытается объяснить, почему полученные данные никоим образом не относятся к темной материи, это все равно может стать новым шагом в понимании Природы. В любом случае результат есть и надо продолжать работу. Но полностью согласиться, что темная материя найдена, лично я на данный момент не могу", — комментирует Константин Белоцкий, ведущий научный сотрудник Кафедры физики элементарных частиц НИЯУ "МИФИ".

Теоретическая конструкция в физике, называемая Стандартной моделью, описывает взаимодействия всех известных науке элементарных частиц. Но это всего 5% существующего во Вселенной вещества, остальные же 95% имеют совершенно неизвестную природу. Что представляет из себя эта гипотетическая темная материя и как ученые пытаются ее обнаружить? Об этом в рамках спецпроекта рассказывает Айк Акопян, студент МФТИ и сотрудник кафедры физики и астрофизики.

Стандартная модель элементарных частиц, окончательно подтвержденная после обнаружения бозона Хиггса, описывает фундаментальные взаимодействия (электрослабое и сильное) известных нам обычных частиц: лептонов, кварков и переносчиков взаимодействия (бозонов и глюонов). Однако оказывается, что вся эта огромная сложная теория описывает лишь около 5–6% всей материи, тогда как остальная часть в эту модель никак не вписывается. Наблюдения самых ранних моментов жизни нашей Вселенной показывают нам, что примерно 95% материи, которая окружает нас, имеет совершенно неизвестную природу. Иными словами, мы косвенно видим присутствие этой скрытой материи из-за ее гравитационного влияния, однако напрямую поймать ее пока не удавалось. Это явление скрытой массы получило кодовое название «темная материя».

Современная наука, особенно космология, работает по дедуктивному методу Шерлока Холмса

Сейчас основным кандидатом из группы WISP является аксион, возникающий в теории сильного взаимодействия и имеющий очень малую массу. Такая частица способна в больших магнитных полях превращаться в фотон-фотонную пару, что дает намеки на то, как можно попробовать ее обнаружить. В эксперименте ADMX используют большие камеры, где создается магнитное поле в 80000 гаусс (это в 100000 раз больше магнитного поля Земли). Такое поле в теории должно стимулировать распад аксиона на фотон-фотонную пару, которую и должны поймать детекторы. Несмотря на многочисленные попытки, пока обнаружить WIMP, аксионы или стерильные нейтрино не удалось.

Таким образом, мы пропутешествовали через огромное количество различных гипотез, стремящихся объяснить странное наличие скрытой массы, и, откинув с помощью наблюдений все невозможное, пришли к нескольким возможным гипотезам, с которыми уже можно работать.

Отрицательный результат в науке - это тоже результат, так как он дает ограничение на различные параметры частиц, например отсеивает диапазон возможных масс. Из года в год все новые и новые наблюдения и эксперименты в ускорителях дают новые, более строгие ограничения на массу и другие параметры частиц темной материи. Таким образом, выкидывая все невозможные варианты и сужая круг поисков, мы день ото дня становимся все ближе к понимаю, из чего же все-таки состоит 95% материи в нашей Вселенной.