Самые распространенные химические элементы на земле и во вселенной. Кислород - самый распространённый на земле химический элемент,а какой элемент второй по распространённости? Химические элементы х у самые распространенные

  • 4.Характерные особенности эмпирического и теоритического уровней научных исследований.
  • 6.Роль естествознания в формировании научной картины мира и его вклад в развитие культуры мышления человечества.
  • 7.Естествознание как феномен общечеловеческой культуры. Фундамен-тальные естественнонаучные направления: предмет и методы исследо-вания.
  • 8.Причины, по которым знания, накопленные древними цивилизациями Вавилона, Египта, Китая, не могут считаться научными.
  • 9.Природные и социальные катаклизмы, способствовавшие зарождению истоков научного знания в Древней Греции.
  • 10.Принципы и правила истинного познания, заложенные Фалесом Милет-ским. Поиск первоначал и концепция атомистики (Левкипп и Демокрит).
  • 12.Основы учения о движении тел по Аристотелю. Первая система мироздания Аристотеля – Птолемея.
  • 14.Причины угасания интереса к научному знанию, расцвет монотеистических религий, роль арабских и восточных народов в сохранении и развитии древнегреческих знаний
  • 15.Причины разработки критериев научного знания в Средние века. По-следующие вехи в развитии научного метода, его составляющие и его творцы
  • 20.Типы и механизмы фундаментальных взаимодействий в природе.
  • 21.Проявления фундаментальных взаимодействий в механике, термодинамике, ядерной физике, химии, космологии.
  • 22.Проявления фундаментальных взаимодействий и структурные уровни организации материи.
  • 26.Специфика законов природы в физике, химии, биологии, геологии, космологии.
  • 27.Базовые принципы, лежащие в основе картин мироздания от Аристотеля до наших дней.
  • 32.Современная реализация атомистической концепции Левкиппа – Демокрита. Поколения кварков и лептонов. Промежуточные бозоны как переносчики фундаментальных взаимодействий.
  • 34.Строение химических элементов, синтез трансурановых элементов.
  • 35.Атомно-молекулярный «конструктор» строения вещества. Различие физического и химического подходов в изучении свойств вещества.
  • 40.Основные задачи космологии. Решение вопроса о происхождении Вселенной на разных этапах развития цивилизации.
  • 41.Физические теории, послужившие основой для создания теории «горячей» Вселенной г.А. Гамова.
  • 42.Причины незначительной продолжительности во время начальных «эр» и «эпох» в истории Вселенной.
  • 43.Основные события, происходившие в эру квантовой гравитации. Проблемы «моделирования» этих процессов и явлений.
  • 44.Объяснить с энергетической точки зрения, почему Эпоха адронов предшествовала Эпохе лептонов.
  • 45.Энергии (температуры), при которых произошло отделение излучения от вещества, и Вселенная стала «прозрачной».
  • 46.Строительный материал для формирования крупномасштабной структуры Вселенной.
  • 49.Cвойства черных дыр и их обнаружения себя во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.
  • 51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.
  • 50.Наблюдаемые факты, подтверждающие теорию «горячей» Вселенной.

    Физическая теория эволюции Вселенной, в основе которой лежит предположение о том, что до того, как в природе появились звезды, галактики и другие астрономические объекты, вещество представляло собой быстро расширяющуюся и первоначально очень горячую среду. Предположение о том, что расширение Вселенной началось с "горячего" состояния, когда вещество представляло собой смесь различных взаимодействующих между собой элементарных частиц высоких энергий, было впервые выдвинуто Г.А.Гамовым в 1946 г. В настоящее время Г.В.Т. считается общепризнанной, Двумя самыми важными наблюдательными подтверждениями этой теории является обнаружение реликтового излучения, предсказанного теорией, и объяснение наблюдаемого соотношения между относительной массой водорода и гелия в природе.

    51.Методы определения химического состава звезд и планет. Наиболее распространенные химические элементы во Вселенной.

    Несмотря на то, что с момента запуска в космос первого космического аппарата прошло уже несколько десятилетий, большинство исследуемых астрономами небесных объектов являются пока недосягаемыми. Между тем, даже о самых отдалённых планетах солнечной системы и их спутниках собрано достаточно сведений.

    Астрономам часто приходится применять для исследования небесных тел дистанционные способы. Одним из самых распространённых является спектральный анализ. При помощи него удаётся определить приблизительный химический состав атмосферы планет и даже их поверхности.

    Дело в том, что атомы различных веществ излучают энергию в определённом диапазоне волн. Измерив энергию, которая выделяется в определённом спектре, специалисты могут определить и общую их массу, а соответственно, и то вещество, которое создает излучение.

    Однако чаще всего при определении точного химического состава возникают некоторые трудности. Атомы вещества могут находиться в таких условиях, что их излучение трудно наблюдать, поэтому необходимо учитывать некоторые побочные факторы (например, температуру объекта).

    Спектральные линии помогают, дело в том, что каждый элемент имеет определенный цвет спектра и рассматривая какую нибудь планету (звезду) ну в общем объект, при помощи специальных приборов - спектрографов, мы можем увидить их испускаемый цвет или ряд цветов! Потом по табличке специальной смотрится, какому веществу эти линии принадлежат! ! Наука этим занимающаяся - спектроскопия

    Спектроскопия - раздел физики, посвященный изучению спектров электромагнитного излучения.

    Спектральный анализ - совокупность методов определения состава (например, химического) объекта, основанный на изучении свойств приходящего от него излучения (в частности, света) . Оказалось, что атомы каждого химического элемента имеют строго определенные резонансные частоты, в результате чего именно на этих частотах они излучают или поглощают свет. Это приводит к тому, что в спектроскопе на спектре видны линии (тёмные или светлые) в определённых местах, характерных для каждого вещества. Интенсивность линий зависит от количества вещества и даже его состояния. В количественном спектральном анализе определяют содержание исследуемого вещества по относительной или абсолютной интенсивностям линий или полос в спектрах. Различают атомный и молекулярный спектральный анализ, эмиссионный ”по спектрам испускания” и абсорбционный ”по спектрам поглощения”.

    Оптический спектральный анализ характеризуется относительной простотой выполнения, экспрессностью, отсутствием сложной подготовки проб к анализу, незначительным количеством вещества (10-30 мг) , необходимого для анализа на большое число элементов. Спектры эмиссии получают переведением вещества в парообразное состояние и возбуждением атомов элементов нагреванием вещества до 1000-10000°С. В качестве источников возбуждения спектров при анализе материалов, проводящих ток, применяют искру, дугу переменного тока. Пробу помещают в кратер одного из угольных электродов. Для анализа растворов широко используют пламя различных газов. Спектральный анализ - чувствительный метод и широко применяется в химии, астрофизике, металлургии, машиностроении, геологической разведке и др. Метод был предложен в 1859 г. Г. Кирхгофом и Р. Бунзеном. С его помощью гелий был открыт на Солнце ранее, чем на Земле.

    Распространённость химических элементов, мера того как распространены или редки элементы по сравнению с другими элементами в данной среде. Распространённость в различных случаях могут измерять массовой долей, мольной долей или объёмной долей. Распространённость химических элементов часто представляется кларками.

    Например, массовая доля распространённости кислорода в воде составляет около 89 %, потому что это доля массы воды, которой является кислород. Однако, мольная доля распространённости кислорода в воде только 33 %, потому что только 1 из 3 атомов в молекуле воды является атомом кислорода. Во Вселенной в целом, и в атмосферах газовых планет-гигантов, таких как Юпитер, массовая доля распространенности водорода и гелия около 74 % и 23-25 % соответственно, в то время атомная мольная доля элементов ближе к 92 % и 8 %.

    Однако, так как водород является двухатомным, а гелий - нет, в условиях внешней атмосферы Юпитера, молекулярная мольная доля водорода составляет около 86 %, а гелия - 13 %.

    "

    Безусловно, что в нашем понимании это нечто единое целое. Но имеющее свою структуру и состав. Сюда относятся все небесные тела и объекты, материя, энергия, газ, пыль и многое другое. Все это образовалось и существует, независимо от того, видим ли мы это или ощущаем.

    Учёные давно рассматривают такие вопросы: Что же образовало такую вселенную? И какие элементы её наполняют?

    Сегодня мы поговорим о том, какой элемент самый распространённый во вселенной.

    Оказывается этот химический элемент самый лёгкий в мире. Кроме тго, его одноатомная форма составляет примерно 87% всего состава вселенной. Помимо того, он содержится в большинстве молекулярных соединений. Даже в воде, или, к примеру, он является частью органических веществ. Вдобавок водород выступает особенно важной составляющей частью кислотно-основных реакций.
    Кроме того, элемент растворим в большинстве металлах. Что интересно, водород не обладает запахом, цветом и вкусом.


    В процессе изучения, учёные называли водород горючим газом.
    Как только не определяли его. В своё время он носил имя рождающий воду, а затем водотворное вещество.
    Лишь в 1824 году ему присвоили название водород.

    Во водород входит в состав 88,6% всех атомов. Остальное в большем количестве составляет гелий. И лишь малая часть это прочие элементы.
    Следственно, звёзды и другие газы имеют в своём составе в основном водород.
    Кстати, опять же он имеется и в звёздных температурах. Однако в виде плазмы. А в космическом пространстве он представлен в виде молекул, атомов и ионов. Интересно, что водород способен формировать молекулярные облака.


    Характеристика водорода

    Водород уникальный элемент, так как не имеет нейтрон. Он содержит лишь один протон и электрон.
    Как указывалось, это самый лёгкий газ. Важно, что чем меньше масса молекул, тем выше их скорость. На это не влияет даже температура.
    Теплопроводность водорода одна из высоких среди всех газов.
    Помимо всего прочего, он хорошо растворим в металлах, что влияет на его способность диффундировать через них. Иногда процесс приводит к разрушению. К примеру, взаимодействие водорода и углерода. В этом случае происходит декарбонизация.

    Появление водорода

    Возник во вселенной после Большого взрыва. Как и все химические элементы. По теории, в первые микросекунды после взрыва температура вселенной была выше 100 млрд градусов. Что образовало связь трёх кварков. В свою очередь, эта взаимодействие создало протон. Таким образом, возникло ядро атома водорода. В процессе расширения температура упала, и кварки образовали протоны и нейтроны. Так, на самом деле, возник водород.


    В промежутке от 1 до 100 секунд после образования вселенной часть протонов и нейтронов соединилась. Тем самым образовав другой элемент-гелий.
    В дальнейшем расширение пространства и как следствие снижение температуры приостановило соединительные реакции. Что важно, они вновь запустились внутри звёзд. Так образовались атомы других химических элементов.
    В результате получается, что водород и гелий являются основными двигателями образования остальных элементов.


    Гелий вообще является вторым по распространённости элементом во вселенной. Его доля составляет 11,3% всего космического пространства.

    Свойства гелия

    Он, так же как и водород, не имеет запаха, цвета и вкуса. Вдобавок, это второй по лёгкости газ. Но его температура кипения самая низкая из всех известных.

    Гелий — это инертный, нетоксичный и одноатомный газ. Теплопроводность его высокая. По этой характеристике он вновь стоит на втором месте после водорода.
    Добыча гелия осуществляется методом разделения при низкой температуре.
    Интересно, что раньше гелий считали металлом. Но в процессе изучения определили, что это газ. При том, основной в составе вселенной.


    Все элементы на Земле, за исключением водорода и гелия, породила миллиарды лет назад алхимия звезд, часть которых является ныне неприметными белыми карликами где-то на другой стороне Млечного Пути. Азот наших ДНК, кальций наших зубов, железо нашей крови, углерод наших яблочных пирогов созданы в недрах сжимающихся звезд.

    Мы сотворены из звездного вещества.
    Карл Саган

    Применение элементов

    Человечество научилось добывать и применять с пользой для себя химические элементы. Так водород и гелий применяют во многих сферах деятельности. Например в:

    • пищевой промышленности;
    • металлургии;
    • химической промышленности;
    • нефтепереработке;
    • производстве электроники;
    • косметической промышленности;
    • геологии;
    • даже в военной сфере и др.

    Как видно, эти элементы играют важную роль в жизни вселенной. Очевидно, само наше существование напрямую зависит от них. Мы знаем, что ежеминутно происходит рост и движение . И несмотря на то, что они по отдельности небольшие, все вокруг основано из этих элементов.
    Поистине, водород и гелий, также как другие химические элементы, уникальны и удивительны. Пожалуй с этим невозможно поспорить.

    Есть наиболее распространённый химический элемент и наиболее распространённое вещество на нашей удивительной планете, а есть самый распространённый химический элемент на просторах Вселенной.

    Самый распространенный химический элемент на Земле

    На нашей планете лидером по распространенности является кислород. Он взаимодействует почти со всеми элементами. Его атомы есть практически во всех горных породах и минералах, которые образуют земную кору. Современный период развития химии начался именно с открытия этого важного и первостепенного химического элемента. Заслугу этого открытия делят между собой Шееле, Пристли и Лавуазье. Споры о том, кто из них является первооткрывателем идут сотни лет, и до сих пор не прекратились. А вот само слово «кислород» ввел в употребление Ломоносов.

    На его долю приходится немного более чем сорок семь процентов всей твердой массы земной коры. Связанный кислород составляет почти восемьдесят девять процентов массы пресной и морской воды. Свободный кислород находится в атмосфере, составляя около двадцати трех процентов массы и почти двадцать один процент объема. Не менее полутора тысяч соединений земной коры содержат кислород. На свете не существует живых клеток, в которых не было бы этого распространенного элемента. Шестьдесят пять процентов массы каждой живой клетки – это кислород.


    Сегодня данное вещество получают промышленным путем из воздуха и поставляют его под давлением 15 МПа в стальных баллонах. Существуют и другие способы его получения. Сферы применения – пищевая промышленность, медицина, металлургия и др.

    Где встречается самый распространенный элемент?

    Найти в природе уголок, где не было бы кислорода, практически невозможно. Он везде – и в недрах, и высоко над Землей, и под водой, и в самой воде. Встречается он не только в соединениях, но и свободном состоянии. Скорее всего, именно из-за этого для ученых данный элемент всегда представлял интерес.


    Геологи и химики занимаются изучением наличия кислорода в соединении со всеми элементами. Ботаникам интересно исследовать процессы питания и дыхания растений. Физиологи до конца не выяснили роль кислорода в жизни животных и человека. Физики стремятся найти новый способ его использования для создания высоких температур.

    Известно, что не зависимо от того, жаркий ли это южный воздух либо холодный воздух северных районов, содержание в нем кислорода всегда одинаково и составляет двадцать один процент.


    Как используют самое распространенное вещество?

    Как самое распространенное из известных веществ планеты, вода используется повсеместно. Этим веществом все охвачено и пронизано, однако оно так и остается мало изученным. Углубленным его изучением современная наука занялась сравнительно недавно. Учеными было обнаружено множество не поддающихся пока объяснению ее свойств.


    Без этого самого распространенного вещества не обходится ни единая хозяйственная деятельность человека. Сложно представить себе сельское хозяйство или промышленность без воды, так же без этого вещества не будут работать ядерные реакторы, турбины, энергетические установки, где вода используется для охлаждения. Для бытовых нужд люди используют из года в год все больший объем данного вещества. Так человеку каменного века в день было вполне достаточно десяти литров воды. Сегодня же на долю каждого жителя Земли ежедневно в совокупности используется не менее двухсот двадцати литров. Люди состоят из воды на восемьдесят процентов, ежедневно день каждый потребляет не менее полутора литров жидкости.

    Самый распространенный химический элемент во Вселенной

    Три четвертых всей Вселенной – это водород, иными словами – это и есть самый распространенный элемент Вселенной. Вода, будучи наиболее распространенным веществом нашей планеты, более чем на одиннадцать процентов состоит из водорода.


    В земной коре водорода по массе один процент, однако, по числу атомов – целых шестнадцать процентов. Не обходятся без присутствия водорода такие соединения, как природные газы, нефть и уголь.

    Надо отметить, что в свободном состоянии этот распространенный элемент встречается крайне редко. На поверхности нашей планеты он в малых количествах присутствует в некоторых природных газах, в том числе и в вулканических. Есть свободный водород в атмосфере, но его присутствие там чрезвычайно мало. Именно водород тот элемент, который создает радиационный внутренний земной пояс, как поток протонов.


    Из водорода примерно на пятьдесят процентов состоят многие звезды и солнце, где он присутствует в виде плазмы. Из него состоит большая часть межзвездной среды, а так же газов туманностей. Присутствует водород так же в атмосферах планет и в кометах.


    Как химический элемент его определили в 1766-ом году. Это сделал Генри Кавендиш. Им же спустя пятнадцать лет было выяснено, что результатом взаимодействия водорода с кислородом является вода. «Характер» водорода поистине взрывной, за это он получил название взрывного газа.

    А вот самая большая звезда во вселенной имеет диаметр 1 391 000. .
    Подпишитесь на наш канал в Яндекс.Дзен

    Это была сенсация - оказывается, важнейшее вещество на Земле состоит из двух не менее важных химических элементов. «АиФ» решил заглянуть в таблицу Менделеева и вспомнить, благодаря каким же элементам и соединениям существует Вселенная, а также жизнь на Земле и человеческая цивилизация.

    ВОДОРОД (H)

    Где встречается: самый распространённый элемент во Вселенной, её главный «строительный материал». Из него состоят звёзды, в том числе Солнце. Благодаря термоядерному синтезу с участием водорода Солнце будет греть нашу планету ещё 6,5 млрд. лет.

    Чем полезен: в промышленности - при производстве аммиака, мыла и пластмасс. Большие перспективы у водородной энергетики: этот газ не загрязняет окружающую среду, т. к. при сгорании даёт только водяной пар.

    УГЛЕРОД (C)

    Где встречается: любой организм в значительной степени построен из углерода. В теле человека этот элемент занимает около 21%. Так, наши мышцы состоят из него на 2/3. В свободном состоянии в природе встречается в виде графита и алмаза.

    Чем полезен: пища, энергоносители и мн. др. Класс соединений на основе углерода огромен - углеводороды, белки, жиры и т. д. Этот элемент незаменим в нанотехнологиях.

    АЗОТ (N)

    Где встречается: атмосфера Земли на 75% состоит из азота. Входит в состав белков, аминокислот, гемоглобина и др.

    Чем полезен: необходим для существования животных и растений. В промышленности используется как газовая среда для упаковки и хранения, хладагент. С его помощью синтезируют разнообразные соединения - аммиак, удобрения, взрывчатые вещества, красители.

    КИСЛОРОД (O)

    Где встречается: Самый распространённый на Земле элемент, на его долю приходится около 47% массы твёрдой земной коры. Морские и пресные воды на 89% состоят из кислорода, атмосфера - на 23%.

    Чем полезен: Благодаря кислороду живые существа могут дышать, без него не был бы возможен огонь. Этот газ широко используется в медицине, металлургии, пищевой промышленности, энергетике.

    УГЛЕКИСЛЫЙ ГАЗ (CO2)

    Где встречается: В атмосфере, в морской воде.

    Чем полезен: Благодаря этому соединению растения могут дышать. Процесс поглощения углекислоты из воздуха называется фотосинтезом. Это основной источник биологической энергии. Стоит напомнить, что энергия, которую мы получаем при сжигании ископаемого топлива (угля, нефти, газа), накоплена в недрах земли на протяжении миллионов лет именно благодаря фотосинтезу.

    ЖЕЛЕЗО (Fe)

    Где встречается: один из самых распространённых в Солнечной системе элементов. Из него состоят ядра планет земной группы.

    Чем полезен: металл, с древних времён применяемый человеком. Целая историческая эпоха получила название Железного века. Сейчас до 95% мирового производства металлов приходится на железо, это основной компонент сталей и чугунов.

    СЕРЕБРО (Ag)

    Где встречается: Один из дефицитных элементов. Раньше встречался в природе в самородном виде.

    Чем полезен: С середины XIII века стал традиционным материалом для изготовления посуды. Обладает уникальными свойствами, поэтому применяется в различных отраслях - в ювелирном деле, в фотографии, электротехнике и электронике. Известны и дезинфицирующие свойства серебра.

    ЗОЛОТО (Au)

    Где встречается: раньше встречался в природе в самородном виде. Добывается на приисках.

    Чем полезен: важнейший элемент мировой финансовой системы, т. к. запасы его невелики. Издавна использовалось в качестве денег. В настоящее время все банковские резервы золота оцениваются

    в 32 тыс. тонн - если сплавить их воедино, получится куб со стороной всего лишь 12 м. Используется в медицине, микроэлектронике, при ядерных исследованиях.

    КРЕМНИЙ (Si)

    Где встречается: По распространённости в земной коре этот элемент занимает второе место (27-30% всей массы).

    Чем полезен: Кремний - основной материал для электроники. Также применяется в металлургии и в производстве стекла и цемента.

    ВОДА (H2O)

    Где встречается: Наша планета на 71% покрыта водой. Тело человека на 65% состоит из этого соединения. Вода есть и в космическом пространстве, в теле комет.

    Чем полезна: Имеет ключевое значение в создании и поддержании жизни на Земле, потому что благодаря молекулярным свойствам является универсальным растворителем. У воды много уникальных свойств, о которых мы не задумываемся. Так, если бы она при замерзании не увеличивалась в объёме, жизнь просто не зародилась бы: водоёмы каждую зиму промерзали бы до дна. А так, расширяясь, более лёгкий лёд остаётся на поверхности, сохраняя под собой жизнеспособную среду.

    самое распространенное вещество на земле

    Альтернативные описания

    Растаявший лед

    Самая распространенная на земле жидкость

    Прозрачная бесцветная жидкость

    . "Губит людей не пиво, губит людей..."

    . "Как с гуся..."

    . "Не разлей..."

    . "Под лежачий камень... не течет"

    . "аш два О"

    . "в морях и реках обитает, но часто по небу летает, а как наскучит ей летать, на землю падает опять" (загадка)

    . "тихая... берега подмывает" (посл.)

    . "тонкая материя", оказавшаяся на первой ступени "лестницы природы", построенной в 18 веке швейцарским натуралистом Шарлем Бонне

    Ты жизнь

    65% человеческого тела

    Без нее "и ни туды, и ни сюды"

    Без нее жизни нет

    Большая часть водки

    В нее обычно прячут концы

    Важнейшее неорганическое вещество для нас

    Водка без алкоголя

    Водка без спирта

    Водород+ кислород

    Второе к воде и медным трубам

    Газированная...

    Горячая и холодная в кране

    Губит людей в отличие от пива

    Губительница людей (песен.)

    Дистиллированная...

    Драгоценность в пустыне

    Друзья - не разлей...

    Ее в ступе не толкут

    Ею поливают сад и огород

    Жидкая колыбель жизни

    Жидкость

    Жидкость без вкуса, цвета и запаха

    Жидкость в ванне

    Жидкость, которая льется в пустых речах

    Жидкость, которой много утекло

    Жидкость, необходимая для существования всего живого

    Из чего состоит снежинка

    Именно в ее каплю советовали заглянуть римские мудрецы, "если хочешь познать мир"

    Каким теплоносителем, как правило, охлаждают кипящий реактор

    Камень точит

    Картина российского художника С. Чуйкова "Живая..."

    Колодезная...

    Компонент бетона

    Компонент водки

    Лишняя в водке, по мнению пьяниц

    Лучшее средство от жажды

    Льется из крана

    Малозначащий компонент водки

    Минералка

    Минеральная в бутылке

    Минеральная, газированная

    Мутная после ледохода

    Мы пьем ее и в ней купаемся

    Мы пьем ее и ею паримся

    Наливают в ведро или в стакан

    Наливают в чайник для кипячения

    Наполнительница ванн и морей

    Обязательное условие жизни

    Одно из самых распространенных веществ в природе

    Оказывается, из нее и сухим можно выйти

    Оксид дейтерия или тяжелая...

    Она льется в пустых речах

    Она может течь, а может капать

    Она не течет под лежачий камень

    Основа всего живого на Земле

    Основа жизни

    Парное молоко в ночном озере

    Партнер огня и медных труб

    Питьевой союз двух газов

    Плоть дождя

    Плоть моря

    По мнению французского химика Леонеля, молекула этого вещества напоминает персик, по бокам которого прикреплены два абрикоса

    Популярный в Германии травяной ликер "Данцигская золотая...", содержит мельчайшие частицы сусального золота

    Пресная...

    Пресная в озере

    Пресная в пруду

    Пресная жидкость в пруду

    Прозрачная бесцветная жидкость, представляющая собой химическое соединение водорода и кислорода

    Проточная в джакузи

    Прятка для концов

    Растаявший лед

    Рыбная среда обитания

    Сбежала из ведра

    Седьмая жидкость на киселе

    Седьмая на киселе

    Сжиженный лед

    Согласно казахской пословице, без недостатка только бог, без грязи - только она

    Содержим. решета согласно поговорки

    Содержимое клепсидры

    Содержимое реки и моря

    Содержимое самовара

    Соленая в море

    Соленая влага моря

    Соленая морская...

    Спасение от жажды

    Так называют линейную часть дистанции для одной лодки

    Текучка из душа

    Течет из крана

    То, чем "дышат" рыбы

    То, чем не разольешь настоящую дружбу

    То, что возят на обиженных

    То, что наливают из-под крана

    Устаревшее античное созвездие

    Утоляет жажду

    Фильм А. А. Роу "Огонь, ... и медные трубы"

    Химическое вещество без которого ни человек, ни животное долго не протянет

    Химическое вещество в виде прозрачной жидкости

    Ходит без ног, рукава без рук, уста - без речи (загадка)

    Чем разбавляют спирт

    Что в даосизме стало символом триумфа видимой слабости над силой

    Что вскипает в самоваре

    Что отмеряло время в античной клепсидре

    Некипяч. чай без сахара и заварки

    Партнёр огня и медных труб

    С лица её не пить, согласно поговорке

    Содержимое сливного бачка