Взаимодействие алкинов. Основные реакции алкенов

Тема урока: Алкены. Получение, химические свойства и применение алкенов.

Цели и задачи урока:

  • рассмотреть конкретные химические свойства этилена и общие свойства алкенов;
  • углубить и конкретизировать понятия о?-связи, о механизмах химических реакций;
  • дать первоначальные представления о реакциях полимеризации и строении полимеров;
  • разобрать лабораторные и общие промышленные способы получения алкенов;
  • продолжить формирование умения работать с учебником.

Оборудование: прибор для получения газов, раствор КМnO 4 , этиловый спирт, концентрированная серная кислота, спички, спиртовка, песок, таблицы «Строение молекулы этилена», «Основные химические свойства алкенов», демонстрационные образцы «Полимеры».

ХОД УРОКА

I. Организационный момент

Мы продолжаем изучение гомологического ряда алкенов. Сегодня нам предстоит рассмотреть способы получения, химические свойства и применение алкенов. Мы должны охарактеризовать химические свойства, обусловленные двойной связью, получить первоначальные представления о реакциях полимеризации, рассмотреть лабораторные и промышленные способы получения алкенов.

II. Активизация знаний учащихся

  1. Какие углеводороды называются алкенами?
  1. Каковы особенности их строения?
  1. В каком гибридном состоянии находятся атомы углерода, образующие двойную связь в молекуле алкена?

Итог: алкены отличаются от алканов наличием в молекулах одной двойной связи, которая обуславливает особенности химических свойств алкенов, способов их получения и применения.

III. Изучение нового материала

1. Способы получения алкенов

Составить уравнения реакций, подтверждающих способы получения алкенов

– крекинг алканов C 8 H 18 ––> C 4 H 8 + C 4 H 10 ; (термический крекинг при 400-700 o С)
октан бутен бутан
– дегидрирование алканов C 4 H 10 ––> C 4 H 8 + H 2 ; (t, Ni)
бутан бутен водород
– дегидрогалогенирование галогеналканов C 4 H 9 Cl + KOH ––> C 4 H 8 + KCl + H 2 O;
хлорбутан гидроксид бутен хлорид вода
калия калия
– дегидрогалогенирование дигалогеналканов
– дегидратация спиртов С 2 Н 5 ОН ––> С 2 Н 4 + Н 2 О (при нагревании в присутствии концентрированной серной кислоты)
Запомните! При реакиях дегидрирования, дегидратации, дегидрогалогенирования и дегалогенирования нужно помнить, что водород преимущественно отрывается от менее гидрогенизированных атомов углерода (правило Зайцева, 1875 г.)

2. Химические свойства алкенов

Характер углерод – углеродной связи определяет тип химических реакций, в которые вступают органические вещества. Наличие в молекулах этиленовых углеводородов двойной углерод – углеродной связи обуславливает следующие особенности этих соединений:
– наличие двойной связи позволяет отнести алкены к ненасыщенным соединениям. Превращение их в насыщенные возможно только в результате реакций присоединения, что является основной чертой химического поведения олефинов;
– двойная связь представляет собой значительную концентрацию электронной плотности, поэтому реакции присоединения носят электрофильный характер;
– двойная связь состоит из одной - и одной -связи, которая достаточно легко поляризуется.

Уравнения реакций, характеризующих химические свойства алкенов

а) Реакции присоединения

Запомните! Реакции замещения свойственны алканам и высшим циклоалканам, имеющим только одинарные связи, реакции присоединения – алкенам, диенам и алкинам, имеющим двойные и тройные связи.

Запомни! Возможны следующие механизмы разрыва -связи:

а) если алкены и реагент – неполярные соединения, то -связь разрывается с образованием свободного радикала:

H 2 C = CH 2 + H: H ––> + +

б) если алкен и реагент – полярные соединения, то разрыв -связи приводит к образование ионов:

в) при соединении по месту разрыва -связи реагентов, содержащих в составе молекулы атомы водорода, водород всегда присоединяется к более гидрированному атому углерода (правило Морковникова, 1869 г.).

– реакция полимеризации nCH 2 = CH 2 ––> n – CH 2 – CH 2 –– > (– CH 2 – CH 2 –)n
этен полиэтилен

б) реакция окисления

Лабораторный опыт. Получить этилен и изучить его свойства (инструкция на столах учащихся)

Инструкция по получению этилена и опытов с ним

1. Поместите в пробирку 2 мл концентрированной серной кислоты, 1 мл спирта и небольшое количество песка.
2. Закройте пробирку пробкой с газоотводной трубкой и нагрейте в пламени спиртовки.
3. Выделяющийся газ пропустите через раствор с перманганатом калия. Обратите внимание на изменение цвета раствора.
4. Подожгите газ у конца газоотводной трубки. Обратите внимание на цвет пламени.

– алкены горят светящимся пламенем. (Почему?)

C 2 H 4 + 3O 2 ––> 2CO 2 + 2H 2 O (при полном окислении продуктами реакции являются углекислый газ и вода)

Качественная реакция: «мягкое окисление (в водном растворе)»

– алкены обесцвечивают раствор перманганата калия (реакция Вагнера)

При более жёстких условиях в кислой среде продуктами реакции могут быть карбоновые кислоты, например (в присутствии кислот):

CH 3 – CH = CH 2 + 4 [O] ––> CH 3 COOH + HCOOH

– каталичесикое окисление

Запомните главное!

1. Непредельные углеводороды активно вступают в реакции присоединения.
2. Реакционная активность алкенов связана с тем, что - связь под действием реагентов легко разрывается.
3. В результате присоединения происходит переход атомов углерода из sp 2 – в sp 3 - гибридное состояние. Продукт реакции имеет предельный характер.
4. При нагревании этилена, пропилена и других алкенов под давление или в присутствии катализатора их отдельные молекулы соединяются в длинные цепочки – полимеры. Полимеры (полиэтилен, полипропилен) имеют большое практическое значение.

3. Применение алкенов (сообщение учащегося по следующему плану).

1 – получение горючего с высоким октановым числом;
2 – пластмасс;
3 – взрывчатых веществ;
4 – антифризов;
5 – растворителей;
6 – для ускорения созревания плодов;
7 – получение ацетальдегида;
8 – синтетического каучука.

III. Закрепление изученного материала

Домашнее задание: §§ 15, 16, упр. 1, 2, 3 стр. 90, упр. 4, 5 стр. 95.

Простейшим алкеном является этен C 2 H 4 .По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.



Пространственная структура этилена


По названию первого представителя этого ряда - этилена - такие углеводороды называют этиленовыми.

Номенклатура и изомерия

Номенклатура

Алкены простого строения часто называют, заменяя суффикс -ан в алканах на -илен: этан - этилен, пропан - пропилен и т.д.


По систематической номенклатуре названия этиленовых углеводородов производят заменой суффикса -ан в соответствующих алканах на суффикс -ен (алкан - алкен, этан - этен, пропан - пропен и т.д.). Выбор главной цепи и порядок названия тот же, что и для алканов. Однако в состав цепи должна обязательно входить двойная связь. Нумерацию цепи начинают с того конца, к которому ближе расположена эта связь. Например:



Иногда используют и рациональные названия. В этом случае все алкеновые углеводороды рассматривают как замещенные этилена:



Непредельные (алкеновые) радикалы называют тривиальными названиями или по систематической номенклатуре:


Н 2 С = СН - - винил (этенил)


Н 2 С = CН - СН 2 - -аллил (пропенил-2)

Изомерия

Для алкенов характерны два вида структурной изомерии. Кроме изомерии, связанной со строением углеродного скелета (как у алканов), появляется изомерия, зависящая от положения двойной связи в цепи. Это приводит к увеличению числа изомеров в ряду алкенов.


Первые два члена гомологического ряда алкенов -(этилен и пропилен) - изомеров не имеют и их строение можно выразить так:


H 2 C = CH 2 этилен (этен)


H 2 C = CH - CH 3 пропилен (пропен)

Изомерия положения кратной связи

H 2 C = CH - CH 2 - CH 3 бутен-1


H 3 C - CH = CH - CH 3 бутен-2

Геометрическая изомерия - цис-, транс- изомерия.

Такая изомерия характерна для соединений с двойной связью.


Если простая σ -связь допускает свободное вращение отдельных звеньев углеродной цепи вокруг своей оси, то вокруг двойной связи такого вращения не происходит. Это и является причиной появления геометрических (цис-, транс- ) изомеров.


Геометрическая изомерия - один из видов пространственной изомерии.


Изомеры, у которых одинаковые заместители (при разных углеродных атомах) расположены по одну сторону от двойной связи, называют цис-изомерами,а по разную - транс-изомерами:



Цис- и транс- изомеры отличаются не только пространственным строением, но и многими физическими и химическими свойствами. Транс- изомеры более устойчивы, чем цис- изомеры.

Получение алкенов

В природе алкены встречаются редко. Обычно газообразные алкены (этилен, пропилен, бутилены) выделяют из газов нефтепереработки (при крекинге) или попутных газов, а также из газов коксования угля.


В промышленности алкены получают дегидрированием алканов в присутствии катализатора (Сr 2 О 3).

Дегидрирование алканов

H 3 C - CH 2 - CH 2 - CH 3 → H 2 C = CH - CH 2 - CH 3 + H 2 (бутен-1)


H 3 C - CH 2 - CH 2 - CH 3 → H 3 C - CH = CH - CH 3 + H 2 (бутен-2)


Из лабораторных способов получения можно отметить следующие:


1. Отщепление галогеноводорода от галогеналкилов при действии на них спиртового раствора щелочи:



2. Гидрирование ацетилена в присутствии катализатора (Pd):


H-C ≡ C-H + H 2 → H 2 C = CH 2


3. Дегидратация спиртов (отщепление воды).
В качестве катализатора используют кислоты (серную или фосфорную) или Аl 2 O 3:



В таких реакциях водород отщепляется от наименее гидрогенизированного (с наименьшим числом водородных атомов) углеродною атома (правило А.М.Зайцева):


Физические свойства

Физические свойства некоторых алкенов показаны в таблице ниже. Первые три представителя гомологического ряда алкенов (этилен, пропилен и бутилен) - газы, начиная с C 5 H 10 (амилен, или пентен-1) - жидкости, а с С 18 Н 36 - твердые вещества. С увеличением молекулярной массы повышаются температуры плавления и кипения. Алкены нормального строения кипят при более высокой температуре, чем их изомеры, имеющие изостроение. Температуры кипения цис -изомеров выше, чем транс -изомеров, а температуры плавления - наоборот.


Алкены плохо растворимы в воде (однако лучше, чем соответствующие алканы), но хорошо - в органических растворителях. Этилен и пропилен горят коптящим пламенем.

Физические свойства некоторых алкенов

Название

t пл,°С

t кип,°С

Этилен (этен)

Пропилен (пропен)

Бутилен (бутен-1)

Цис-бутен-2

Транс-бутен-2

Изобутилен (2-метилпропен)

Амилен (пентен-1)

Гексилен (гексен-1)

Гептилен (гептен-1)

Октилен (октен-1)

Нонилен (нонен-1)

Децилен (децен-1)


Алкены малополярны, но легко поляризуются.

Химические свойства

Алкены обладают значительной реакционной способностью. Их химические свойства определяются, главным образом, двойной углерод-углеродной связью.


π-Связь, как наименее прочная и более доступная, при действии реагента разрывается, а освободившиеся валентности углеродных атомов затрачиваются на присоединение атомов, из которых состоит молекула реагента. Это можно представить в виде схемы:



Таким образом, при реакциях присоединения двойная связь разрывается как бы наполовину (с сохранением σ-связи).


Для алкенов, кроме присоединения, характерны еще реакции окисления и полимеризации.

Реакции присоединения

Чаще реакции присоединения идут по гетеролитическому типу, являясь реакциями электрофильного присоединения.


1. Гидрирование (присоединение водорода). Алкены, присоединяя водород в присутствии катализаторов (Pt, Pd, Ni), переходят в предельные углеводороды - алканы:


Н 2 С = СН 2 + H 2 Н 3 С - СН 3 (этан)


2. Галогенирование (присоединение галогенов). Галогены легко присоединяются по месту разрыва двойной связи с образованием дигалогенопроизводных:


Н 2 С = СН 2 + Cl 2 → ClH 2 C - CH 2 Cl (1,2-дихлорэтан)


Легче идет присоединение хлора и брома, труднее - иода. Фтор с алкенами, как и с алканами, взаимодействует со взрывом.






Сравните: у алкенов реакция галогенирования - процесс присоединения, а не замещения (как у алканов).


Реакцию галогенирования обычно проводят в растворителе при обычной температуре.


Присоединение брома и хлора к алкенам происходит по ионному, а не по радикальному механизму. Этот вывод следует из того, что скорость присоединения галогена не зависит от облучения, присутствия кислорода и других реагентов, инициирующих или ингибирующих радикальные процессы. На основании большого числа экспериментальных данных для этой реакции был предложен механизм, включающий несколько последовательных стадий. На первой стадии происходит поляризация молекулы галогена под действием электронов π-связи. Атом галогена, приобретающий некоторый дробный положительный заряд, образует с электронами π-связи нестабильный интермедиат, называемый π-комплексом или комплексом с переносом заряда. Следует отметить, что в π-комплексе галоген не образует направленной связи с каким-нибудь конкретным атомом углерода; в этом комплексе просто реализуется донорно-акцепторное взаимодействие электронной пары π-связи как донора и галогена как акцептора.



Далее π-комплекс превращается в циклический бромониевый ион. В процессе образования этого циклического катиона происходит гетеролитический разрыв связи Br-Br и пустая р -орбиталь sp 2 -гибридизованного атома углерода перекрывается с р -орбиталью "неподеленной пары" электронов атома галогена, образуя циклический ион бромония.



На последней, третьей стадии анион брома как нуклеофильный агент атакует один из атомов углерода бромониевого иона. Нуклеофильная атака бромид-иона приводит к раскрытию трехчленного цикла и образованию вицинального дибромида (vic -рядом). Эту стадию формально можно рассматривать как нуклеофильное замещение S N 2 у атома углерода, где уходящей группой является Br + .



Результат этой реакции нетрудно предвидеть: анион брома атакует карбкатион с образованием дибромэтана.


Быстрое обесцвечивание раствора брома в СCl 4 служит одним из простейших тестов на ненасыщенность, поскольку и алкены, и алкины, и диены быстро реагируют с бромом.


Присоединение брома к алкенам (реакция бромирования) - качественная реакция на предельные углеводороды. При пропускании через бромную воду (раствор брома в воде) непредельных углеводородов желтая окраска исчезает (в случае предельных - сохраняется).


3. Гидрогалогенирование (присоединение галогеноводородов). Алкены легко присоединяют галогенводороды:


H 2 С = СН 2 + НВr → Н 3 С - CH 2 Вr


Присоединение галогенводородов к гомологам этилена идет по правилу В.В.Марковникова (1837 - 1904): при обычных условиях водород галогенводорода присоединяется по месту двойной связи к наиболее гидрогенизированному атому углерода, а галоген - к менее гидрогенизированному:



Правило Марковникова можно объяснить тем, что у несимметричных алкенов (например, в пропилене) электронная плотность распределена неравномерно. Под влиянием метильной группы, связанной непосредственно с двойной связью, происходит смещение электронной плотности в сторону этой связи (на крайний углеродный атом).


Вследствие такого смещения p-связь поляризуется и на углеродных атомах возникают частичные заряды. Легко представить, что положительно заряженный ион водорода (протон) присоединится к атому углерода (электрофильное присоединение), имеющему частичный отрицательный заряд, а анион брома - к углероду с частичным положительным зарядом.


Такое присоединение является следствием взаимного влияния атомов в органической молекуле. Как известно, электроотрицательность атома углерода немного выше, чем водорода.


Поэтому в метильной группе наблюдается некоторая поляризация σ-связей С-Н, связанная со смещением электронной плотности от водородных атомов к углероду. В свою очередь это вызывает повышение электронной плотности в области двойной связи и особенно на ее крайнем, атоме. Таким образом, метильная группа, как и другие алкильные группы, выступает в качестве донора электронов. Однако в присутствии пероксидных соединений или О 2 (когда реакция имеет радикальный характер) эта реакция может идти и против правила Марковникова.


По тем же причинам правило Марковникова соблюдается при присоединении к несимметричным алкенам не только галогеноводородов, но и других электрофильных реагентов (H 2 O, H 2 SО 4 , НОСl, ICl и др.).


4. Гидратация (присоединение воды). В присутствии катализаторов к алкенам присоединяется вода с образованием спиртов. Например:


H 3 C - CH = CH 2 + H - OH → H 3 C - CHOH - CH 3 (изопропиловый спирт)

Реакции окисления

Алкены окисляются легче, чем алканы. Продукты, образованные при окислении алкенов, и их строение зависят от строения алкенов и от условий проведения этой реакции.


1. Горение


Н 2 С = СН 2 + 3O 2 → 2СO 2 + 2Н 2 O


2. Неполное каталитическое окисление


3. Окисление при обычной температуре. При действии на этилен водного раствора КМnO 4 (при нормальных условиях, в нейтральной или щелочной среде - реакция Вагнера) происходит образование двухатомного спирта - этиленгликоля:


3H 2 C = CH 2 + 2KMnO 4 + 4H 2 O → 3HOCH 2 - CH 2 OH (этиленгликоль)+ 2MnO 2 + KOH


Эта реакция является качественной: фиолетовая окраска раствора перманганата калия изменяется при добавлении к нему непредельного соединения.


В более жестких условиях (окисление КМnO 4 в присутствии серной кислоты или хромовой смесью) в алкене происходит разрыв двойной связи с образованием кислородсодержащих продуктов:


H 3 C - CH = CH - CH 3 + 2O 2 → 2H 3 C - COOH (уксусная кислота)

Реакция изомеризации

При нагревании или в присутствии катализаторов алкены способны изомеризоваться - происходит перемещение двойной связи или установление изостроения.

Реакции полимеризации

За счет разрыва π-связей молекулы алкена могут соединяться друг с другом, образуя длинные цепные молекулы.



Нахождение в природе и физиологическая роль алкенов

В природе ациклические алкены практически не встречаются. Простейший представитель этого класса органических соединений - этилен C 2 H 4 - является гормоном для растений и в незначительном количестве в них синтезируется.


Один из немногих природных алкенов - мускалур (цис- трикозен-9) является половым аттрактантом самки домашней мухи (Musca domestica) .


Низшие алкены в высоких концентрациях обладают наркотическим эффектом. Высшие члены ряда также вызывают судороги и раздражение слизистых оболочек дыхательных путей

Отдельные представители

Этилен (этен) - органическое химическое соединение,описываемое формулой С 2 H 4 . Является простейшим алкеном. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности, а также является фитогормоном (низкомолекулярные органические вещества, вырабатываемые растениями и имеющие регуляторные функции).


Этилен - вызывает наркоз, обладает раздражающим и мутагенным действием.


Этилен - самое производимое органическое соединение в мире; общее мировое производство этилена в 2008 году составило 113 миллионов тонн и продолжает расти на 2-3% в год.


Этилен является ведущим продуктом основного органического синтеза и применяется для получения полиэтилена (1-е место, до 60 % всего объёма).


Полиэтилен - термопластичный полимер этилена. Самый распространенный в мире пластик.


Представляет собой воскообразную массу белого цвета (тонкие листы прозрачный бесцветны). Химически- и морозостоек, изолятор, не чувствителен к удару (амортизатор), при нагревании размягчается (80-120°С), при охлаждении застывает, адгезия (сцепление поверхностей разнородных твёрдых и/или жидких тел) - чрезвычайно низкая. Иногда в народном сознании отождествляется с целлофаном - похожим материалом растительного происхождения.


Пропилен - вызывает наркоз (сильнее, чем этилен), оказывает общетоксическое и мутагенное действие.


Устойчив к действию воды, не реагирует с щелочами любой концентрации, с растворами нейтральных, кислых и основных солей, органическими и неорганическими кислотами, даже концентрированной серной кислоты, но разлагается при действии 50%-ой азотной кислоты при комнатной температуре и под воздействием жидкого и газообразного хлора и фтора. Со временем, происходит термостарение.


Полиэтиленовая плёнка (особенно упаковочных, например, пузырчатая упаковка или скотч).



Тара (бутылки, банки, ящики, канистры, садовые лейки, горшки для рассады.


Полимерные трубы для канализации, дренажа, водо-, газоснабжения.



Электроизоляционный материал.


Полиэтиленовый порошок используется как термоклей.



Бутен-2 - вызывает наркоз, обладает раздражающим действием.

Физические свойства алкенов похожи на свойства алканов, хотя все они имеют несколько более низкие температуры плавления и кипения, чем соответствующие алканы. Например, пентан имеет температуру кипения 36 °С, а пентен-1 - 30 °С. При обычных условиях алкены С 2 — С 4 - газы. С 5 – С 15 - жидкости, начиная с C 16 - твердые вещества. Алкены не растворимы в воде, хорошо растворимы в органических растворителях.

В природе алкены встречаются редко. Поскольку алкены являются ценным сырьем для промышленного органического синтеза, разработаны многие способы их получения.

1. Основным промышленным источником алкенов служит крекинг алканов, входящих в состав нефти:

3. В лабораторных условиях алкены получают по реакциям отщепления (элиминирования), при которых от соседних атомов углерода отщепляются два атома или две группы атомов, и образуется дополнительная p -связь. К таким реакциям относятся следующие.

1) Дегидратация спиртов происходит при их нагревании с водоотнимающими средствами, например с серной кислотой при температуре выше 150 °С:

При отщеплении Н 2 O от спиртов, НВr и HCl от алкилгалогенидов атом водорода преимущественно отщепляется от того из соседних атомов углерода, который связан с наименьшим числом атомов водорода (от наименее гидрогенизированного атома углерода). Эта закономерность носит название правила Зайцева .

3) Дегалогенирование происходит при нагревании дигалогенидов, имеющих атомы галогена у соседних атомов углерода, с активными металлами:

CH 2 Br —CHBr —CH 3 + Mg → СН 2 =СН-СН 3 + Mg Вr 2 .

Химические свойства алкенов определяются наличием в их молекулах двойной связи. Электронная плотность p -связи достаточно подвижна и легко вступает в реакции с электрофильными частицами. Поэтому многие реакции алкенов протекают по механизму электрофильного присоединения , обозначаемому символом A E (от англ, addition electrophilic ). Реакции злектрофильного присоединения это ионные процессы, протекающие в несколько стадий.

На первой стадии электрофильная частица (чаще всего это бывает протон H +) взаимодействует с p -электронами двойной связи и образует p -комплекс, который затем превращается в карбокатион путем образования ковалентной s -связи между электрофильной частицей и одним из атомов углерода:

алкен p -комплекс карбокатион

На второй стадии карбокатион реагирует с анионом X — , образуя вторую s -связь за счет электронной пары аниона:

Ион водорода в реакциях электрофильного присоединения присоединяется к тому из атомов углерода при двойной связи, на котором больше отрицательный заряд. Распределение зарядов определяется смещением p -электронной плотности под влиянием заместителей: .

Электронодонорные заместители, проявляющие +I -эффект, смещают p -электронную плотность к более гидрогенизированному атому углерода и создают на нем частичный отрицательный заряд. Этим объясняется правило Марковникова : при присоединении полярных молекул типа НХ(X = Hal , ОН, CN и т.п.) к несимметричным алкенам водород преимущественно присоединяется к более гидрогенизированному атому углерода при двойной связи.

Рассмотрим конкретные примеры реакций присоединения.

1) Гидрогалогенирование . При взаимодействии алкенов с галогеноводородами (HCl , НВr ) образуются алкилгалогениды:

СН 3 -СН=СН 2 + НВr ® СН 3 -СНВr-СН 3 .

Продукты реакции определяются правилом Марковникова.

Следует, однако, подчеркнуть, что в присутствии какого-либо органического пероксида полярные молекулы НХ реагируют с алкенами не по правилу Марковникова:

R-O-O-R
СН 3 -СН=СН 2 + НВr СН 3 -СН 2 -СН 2 Вr

Это связано с тем, что присутствие перекиси обусловливает радикальный, а не ионный механизм реакции.

2) Гидратация . При взаимодействии алкенов с водой в присутствии минеральных кислот (серной, фосфорной) образуются спирты. Минеральные кислоты выполняют роль катализаторов и являются источниками протонов. Присоединение воды также идет по правилу Марковникова:

СН 3 -СН=СН 2 + НОН ® СН 3 -СН(ОН)-СН 3 .

3) Галогенирование . Алкены обесцвечивают бромную воду:

СН 2 =СН 2 + Вr 2 ® ВrСН 2 -СН 2 Вr.

Эта реакция является качественной на двойную связь.

4) Гидрирование . Присоединение водорода происходит под действием металлических катализаторов:

где R = Н, СН 3 , Cl , С 6 Н 5 и т.д. Молекула CH 2 =CHR называется мономером, полученное соединение - полимером , число n-степень полимеризации.

Полимеризация различных производных алкенов дает ценные промышленные продукты: полиэтилен, полипропилен, поливинилхлорид и другие.

Кроме присоединения, для алкенов характерны также реакции окисления. При мягком окислении алкенов водным раствором перманганата калия (реакция Вагнера ) образуются двухатомные спирты:

ЗСН 2 =СН 2 + 2КМn О 4 + 4Н 2 О ® ЗНОСН 2 -СН 2 ОН + 2MnO 2 ↓ + 2KOH .

В результате протекания этой реакции фиолетовый раствор перманганата калия быстро обесцвечивается и выпадает коричневый осадок оксида марганца (IV ). Эта реакция, как и реакция обесцвечивания бромной воды, является качественной на двойную связь. При жестком окислении алкенов кипящим раствором перманганата калия в кислой среде происходит полный разрыв двойной связи с образованием кетонов, карбоновых кислот или СО 2 , например:

[О]
СН 3 -СН=СН-СН 3 2СН 3 -СООН

По продуктам окисления можно установить положение двойной связи в исходном алкене.

Как и все другие углеводороды, алкены горят, и при обильном доступе воздуха образуют диоксид углерода и воду:

С n Н 2 n + Зn /2О 2 ® n СО 2 + n Н 2 О.

При ограниченном доступе воздуха горение алкенов может приводить к образованию монооксида углерода и воды:

С n Н 2n + nО 2 ® nCO + nH 2 O .

Если смешать алкен с кислородом и пропустить эту смесь над нагретым до 200°С серебряным катализатором, то образуется оксид алкена (эпоксиалкан), например:

При любых температурах алкены окисляются озоном (озон более сильный окислитель, чем кислород). Если газообразный озон пропускают через раствор какого-либо алкена в тетрахлор-метане при температурах ниже комнатной, то происходит реакция присоединения, и образуются соответствующие озониды (циклические перекиси). Озониды очень неустойчивы и могут легко взрываться. Поэтому обычно их не выделяют, а сразу после получения разлагают водой - при этом образуются карбонильные соединения (альдегиды или кетоны), строение которых указывает на строение подвергавшегося озонированию алкена.

Низшие алкены - важные исходные вещества для промышленного органического синтеза. Из этилена получают этиловый спирт, полиэтилен, полистирол. Пропен используют для синтеза полипропилена, фенола, ацетона, глицерина.

Алке́ны (олефины , этиленовые углеводороды C n H 2n

Гомологический ряд.

этен (этилен)

Простейшим алкеном является этилен (C 2 H 4). По номенклатуре IUPAC названия алкенов образуются от названий соответствующих алканов заменой суффикса «-ан» на «-ен»; положение двойной связи указывается арабской цифрой.

Углеводородные радикалы, образованные от алкенов имеют суффикс «-енил» . Тривиальные названия: CH 2 =CH- «винил» , CH 2 =CH-CH 2 - «аллил» .

Атомы углерода при двойной связи находятся в состоянии sp² гибридизации, и имеют валентный угол 120°.

Для алкенов характерны изомерия углеродного скелета, положения двойной связи, межклассовая и пространственная.

Физические свойства

    Температуры плавления и кипения алкенов (упрощенно) увеличиваются с молекулярной массой и длиной главной углеродной цепи.

    При нормальных условиях алкены с C 2 H 4 до C 4 H 8 - газы; с пентена C 5 H 10 до гексадецена C 17 H 34 включительно - жидкости, а начиная с октадецена C 18 H 36 - твёрдые вещества. Алкены не растворяются в воде, но хорошо растворяются в органических растворителях.

Дегидрирование алканов

Это один из промышленных способов получения алкенов

Гидрирование алкинов

Частичное гидрирование алкинов требует специальных условий и наличие катализатора

Двойная связь является сочетания сигма- и пи-связей. Сигма- связь возникает при осевом перекрывании sp2 – орбиталей, а пи-связь при боковом перекрывании

Правило Зайцева:

Отщепление атома водорода в реакциях элиминирования происходит преимущественно от наименее гидрогенизированного атома углерода.

13. Алкены. Строение. sp 2 гибридизация, параметры кратной связи. Реакции электрофильного присоединения галогенов, галогеноводородов, хлорноватистой кислоты. Гидратация алкенов. Правило Морковникова. Механизмы реакций.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Одна s- и 2 p-орбитали смешиваются и образуются 2 равноценные sp2-гибридные орбитали, расположенные в одной плоскости под углом 120.

Если связь образуется более чем одной парой электронов, то она называется кратной .

Кратная связь образуется в тех случаях, когда имеется слишком мало электронов и связывающихся атомов, чтобы каждая пригодная для образования связи валентная орбиталь центрального атома могла перекрыться с какой-либо орбиталью окружающего атома.

Реакции электрофильного присоединения

В данных реакциях атакующей частицей является электрофил.

Галогенирование:

Гидрогалогенирование

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова

Марковникова правило

    Присоединение хлорноватистой кислоты с образованием хлоргидринов:

Гидратация

Реакция присоединения воды к алкенам протекает в присутствии серной кислоты :

Карбкатион - частица, в которой на атоме углерода сосредоточен положительный заряд, атом углерода имеет вакантную p-орбиталь.

14. Этиленовые углеводороды. Химические свойства: реакции с окислителями. Каталитическое окисление, реакция с надкислотами, реакция окисления до гликолей, с разрывом связи углерод-углерод, озонирование. Вакер-процесс. Реакции замещения.

Алке́ны (олефины , этиленовые углеводороды ) - ациклические непредельные углеводороды, содержащие одну двойную связьмежду атомами углерода, образующие гомологический ряд с общей формулой C n H 2n

Окисление

Окисление алкенов может происходить в зависимости от условий и видов окислительных реагентов как с разрывом двойной связи, так и с сохранением углеродного скелета.

При сжигании на воздухе олефины дают углекислый газ и воду.

H 2 C=CH 2 + 3O 2 => 2CO 2 + 2H 2 O

C n H 2n + 3n/O 2 => nCO 2 + nH 2 O – общая формула

Каталитическое окисление

В присутствии солей палладия этилен окисляется до ацетальдегида. Аналогично образуется ацетон из пропена.

    При действии на алкены сильных окислителей (KMnO 4 или K 2 Cr 2 O 7 в среде Н 2 SO 4) при нагревании происходит разрыв двойной связи:

При окислении алкенов разбавленным раствором марганцовки образуются двухатомные спирты – гликоли (реакция Е.Е.Вагнера). Реакция протекает на холоде.

Ациклические и циклические алкены при взаимодействии с надкислотами RCOOOH в неполярной, среде образуют эпоксиды (оксираны), поэтому сама реакция носит название реакции эпоксидирования.

Озонирование алкенов.

при взаимодействии алкенов с озоном образуются перекисные соединения, которые называются озо-нидами. Реакция алкенов с озоном является наиболее важным методом окислительного расщепления алкенов по двойной связи

Алкены не вступают в реакции замещения.

Вакер-процесс -процесс получения ацетальдегида прямым окислением этилена.

Вакер-процесс основан на реакции окисления этилена дихлоридом палладия:

CH 2 =CH 2 + PdCl 2 + H 2 O = CH 3 CHO + Pd + 2HCl

15. Алкены: химические свойства. Гидрирование. Правило Лебедева. Изомеризация и олигомеризация алкенов. Радикальная и ионная полимеризация. Понятие полимер, олигомер, мономер, элементарное звено, степень полимеризации. Теломеризация и сополимеризация.

Гидрирование

Гидрирование алкенов непосредственно водородом происходит только в присутствии катализатора. Катализаторами гидрирования служат платина,палладий, никель

Гидрирование можно проводить и в жидкой фазе с гомогенными катализаторами

Реакции изомеризации

При нагревании возможна изомеризация молекул алкенов, которая

может привести как к перемещению двойной связи, так и к изменению скелета

углеводорода.

CH2=CH-CH2-CH3 CH3-CH=CH-CH3

Реакции полимеризации

Это разновидность реакции присоединения. Полимеризация - это реакция последовательного соединения одинаковых молекул в большие по размеру молекулы, без выделения какого-либо низкомолекулярного продукта. При полимеризации атом водорода присоединяется к наиболее гидрогенизированному атому углерода, находящемуся у двойной связи, а к другому атому углерода присоединяется остальная часть молекулы.

CH2=CH2 + CH2=CH2 + ... -CH2-CH2-CH2-CH2- ...

или n CH2=CH2 (-CH2-CH2-)n (полиэтилен)

Вещество, молекулы которого вступают в реакцию полимеризации, называются мономером . Молекула мономера обязательно должна иметь хотя бы одну двойную связь. Образующиеся полимеры состоят из большого количества повторяющихся цепочек, имеющих одинаковое строение (элементарных звеньев). Число, показывающее, сколько раз в полимере повторяется структурное (элементарное) звено, называется степенью полимеризации (n).

В зависимости от вида промежуточных частиц, образующихся при полимеризации, различают 3 механизма полимеризации: а) радикальный; б)катионный; в) анионный.

По первому методу получают полиэтилен высокого давления:

Катализатором реакции выступают пероксиды.

Второй и третий методы предполагает использование в качестве катализаторов кислот (катионная полимеризация), металлорганических соединений.

В химии олигомер ) - молекула в виде цепочки изнебольшого числа одинаковых составных звеньев.

Теломеризация

Теломеризация – олигомеризация алкенов в присутствии веществ – передатчиков цепи (телогенов). В результате реакции образуется смесь олигомеров (теломеров), концевые группы которых представляют собой части телогена. Например, в реакции CCl 4 с этиленом телогеном является CCl 4 .

CCl 4 + nCH 2 =CH 2 => Cl(CH 2 CH 2) n CCl 3

Инициирование этих реакций может осуществляться радикальными инициаторами или g -излучением.

16. Алкены. Реакции радикального присоединения галогенов и галогеноводородов (механизм). Присоединение карбенов к олефинам. Этилен, пропилен, бутилены. Промышленные источники и основные пути использования.

Алкены легко присоединяют галогены, особенно хлор и бром (галогенирование).

Типичной реакцией такого типа является обесцвечивание бромной воды

CH2=CH2 + Вr2 → СH2Br-CH2Br (1,2-дибромэтан)

Электрофильное присоединение галогенводородов к алкенам происходит по правилу Марковникова:

Марковникова правило : при присоединении протонных кислот или воды к несимметричным алкенам или алкинаматом водорода присоединяется к наиболее гидрогенизированному атому углерода

гидрогенизированный атом углерода – тот атом, к которому присоединен водород. Наиболее гидрогенизированный – там где больше всего Н

Реакции присоединения карбенов

Карбены CR 2: - высокореакционные короткоживущие частицы, которые способны легко присоединяться к двойной связи алкенов . В результате реакции присоединения карбена образуются производные циклопропана

Этиле́н - органическое химическое описываемое формулой С 2 H 4 . Является простейшималкеном (олефином )соединение. При нормальных условиях - бесцветный горючий газ со слабым запахом. Частично растворим в воде. Содержит двойную связь и поэтому относится к ненасыщенным или непредельным углеводородам. Играет чрезвычайно важную роль в промышленности. Этилен - самое производимое органическое соединение в мире: Окись этилена; полиэтилен, уксусная кислота, этиловый спирт.

Основные химические свойства (не учи, просто пусть будут на всякий случай, вдруг списать получится)

Этилен - химически активное вещество. Так как в молекуле между атомами углерода имеется двойная связь, то одна из них, менее прочная, легко разрывается, и по месту разрыва связи происходит присоединение, окисление, полимеризация молекул.

    Галогенирование:

CH 2 =CH 2 + Br 2 → CH 2 Br-CH 2 Br

Происходит обесцвечивание бромной воды. Это качественная реакция на непредельные соединения.

    Гидрирование:

CH 2 =CH 2 + H - H → CH 3 - CH 3 (под действием Ni)

    Гидрогалогенирование:

CH 2 =CH 2 + HBr → CH 3 - CH 2 Br

    Гидратация:

CH 2 =CH 2 + HOH → CH 3 CH 2 OH (под действием катализатора)

Эту реакцию открыл A.M. Бутлеров, и она используется для промышленного получения этилового спирта.

    Окисление:

Этилен легко окисляется. Если этилен пропускать через раствор перманганата калия, то он обесцветится. Эта реакция используется для отличия предельных и непредельных соединений. Окись этилена - непрочное вещество, кислородный мостик разрывается и присоединяется вода, в результате образуетсяэтиленгликоль. Уравнение реакции :

3CH 2 =CH 2 + 2KMnO 4 + 4H 2 O → 3HOH 2 C - CH 2 OH + 2MnO 2 + 2KOH

C 2 H 4 + 3O 2 → 2CO 2 + 2H 2 O

    Полимеризация (получение полиэтилена):

nCH 2 =CH 2 → (-CH 2 -CH 2 -) n

Пропиле́н (пропен) СН 2 =СН-СН 3 - непредельный (ненасыщенный) углеводород ряда этилена, горючий газ. Пропилен представляет собой газообразное вещество с низкой температурой кипения t кип = −47,6 °C

Обычно пропилен выделяют из газов нефтепереработки (при крекинге сырой нефти, пиролизе бензиновых фракций) или попутных газов, а также из газов коксования угля.