Принцип суперпозиции для напряжённости и потенциала электрического поля. Принцип суперпозиции электростатических Принцип суперпозиции для электростатического поля привести примеры

Пусть имеются два заряженных макроскопических тела, размеры которых пренебрежимо малы по сравнению с расстоянием между ними. В этом случае каждое тело можно считать материальной точкой или «точечным зарядом».

Французский физик Ш. Кулон (1736–1806) экспериментально установил закон, носящий его имя (закон Кулона ) (рис. 1.5):

Рис. 1.5. Ш. Куло́н (1736–1806) - французский инженер и физик

В вакууме сила взаимодействия двух неподвижных точечных зарядов пропорциональна величине каждого из зарядов, обратно пропорциональна квадрату расстояния между ними и направлена по прямой, соединяющей эти заряды:

На рис. 1.6 показаны электрические силы отталкивания, возникающие между двумя одноименными точечными зарядами.

Рис. 1.6. Электрические силы отталкивания между двумя одноименными точечными зарядами

Напомним, что , где и - радиус-векторы первого и второго зарядов, поэтому силу, действующую на второй заряд в результате его электростатического - «кулоновского» взаимодействия с первым зарядом можно переписать в следующем «развернутом» виде

Отметим следующее, удобное при решении задач, правило: если первым индексом у силы ставить номер того заряда, на который действует эта сила, а вторым – номер того заряда, который создает эту силу, то соблюдение того же порядка индексов в правой части формулы автоматически обеспечивает правильное направление силы - соответствующее знаку произведения зарядов: - отталкивание и - притяжение, при этом коэффициент всегда.

Для измерения сил, действующих между точечными зарядами, был использован созданный Кулоном прибор, называемый крутильными весами (рис. 1.7, 1.8).

Рис. 1.7. Крутильные весы Ш. Кулона (рисунок из работы 1785 г.). Измерялась сила, действующая между заряженными шарами a и b

Рис. 1.8. Крутильные весы Ш. Кулона (точка подвеса)

На тонкой упругой нити подвешено легкое коромысло, на одном конце которого укреплен металлический шарик, а на другом - противовес. Рядом с первым шариком можно расположить другой такой же неподвижный шарик. Стеклянный цилиндр защищает чувствительные части прибора от движения воздуха.

Чтобы установить зависимость силы электростатического взаимодействия от расстояния между зарядами, шарикам сообщают произвольные заряды, прикасаясь к ним третьим заряженным шариком, укрепленным на ручке из диэлектрика. По углу закручивания упругой нити можно измерить силу отталкивания одноименно заряженных шариков, а по шкале прибора - расстояние между ними.

Надо сказать, что Кулон не был первым ученым, установившим закон взаимодействия зарядов, носящий теперь его имя: за 30 лет до него к такому же выводу пришел Б. Франклин. Более того, точность измерений Кулона уступала точности ранее проведенных экспериментов (Г. Кавендиш).

Чтобы ввести количественную меру для определения точности измерений, предположим, что на самом деле сила взаимодействия зарядов обратна не квадрату расстояния между ними, а какой-то другой степени:

Никто из ученых не возьмется утверждать, что d = 0 точно. Правильное заключение должно звучать так: эксперименты показали, что d не превышает...

Результаты некоторых из этих экспериментов приведены в таблице 1.

Таблица 1.

Результаты прямых экспериментов по проверке закона Кулона

Сам Шарль Кулон проверил закон обратных квадратов с точностью до нескольких процентов. В таблице приведены результаты прямых лабораторных экспериментов. Косвенные данные, основанные на наблюдениях магнитных полей в космическом пространстве, приводят к еще более сильным ограничениям на величину d . Таким образом, закон Кулона можно считать надежно установленным фактом.

В СИ единица силы тока (ампер ) является основной, следовательно, единица заряда q оказывается производной. Как мы увидим в дальнейшем, сила тока I определяется как отношение заряда , протекающего через поперечное сечение проводника за время , к этому времени:

Отсюда видно, что сила постоянного тока численно равна заряду, протекающему через поперечное сечение проводника за единицу времени, соответственно этому:

Коэффициент пропорциональности в законе Кулона записывается в виде:

При такой форме записи из эксперимента следует значение величины , которую принято называть электрической постоянной . Приближенное численное значение электрической постоянной следующее:

Поскольку чаще всего входит в уравнения в виде комбинации

приведём численное значение самого коэффициента

Как и в случае элементарного заряда, численное значение электрической постоянной определено экспериментально с высокой точностью:

Кулон - слишком большая единица для использования на практике. Например, два заряда в 1 Кл каждый, расположенные в вакууме на расстоянии 100 м друг от друга, отталкиваются с силой

Для сравнения: с такой силой давит на землю тело массой

Это примерно масса грузового железнодорожного вагона, например, с углем.

Принцип суперпозиции полей

Принцип суперпозиции представляет собой утверждение, согласно которому результирующий эффект сложного процесса воздействия представляет собой сумму эффектов, вызываемых каждым воздействием в отдельности, при условии, что последние взаимно не влияют друг на друга (Физический энциклопедический словарь, Москва, «Советская энциклопедия», 1983, стр. 731). Экспериментально установлено, что принцип суперпозиции справедлив для рассматриваемого здесь электромагнитного взаимодействия.

В случае взаимодействия заряженных тел принцип суперпозиции проявляет себя следующим образом: сила, с которой данная система зарядов действует на некоторый точеч­ный заряд, равна векторной сумме сил, с которыми действует на него каждый из зарядов системы.

Поясним это на простом примере. Пусть имеются два заряженных тела, действующие на третье с силами и соответственно. Тогда система из этих двух тел - первого и второго - действует на третье тело с силой

Это правило справедливо для любых заряженных тел, не только для точечных зарядов. Силы взаимодействия двух произвольных систем точечных зарядов вычисляются в Дополнении 1 в конце этой главы.

Отсюда следует, что электрическое поле системы зарядов определяется векторной суммой напряженностей полей, создаваемых отдельными зарядами системы, т. е.

Сложение напряженностей электрических полей по правилу сложения векторов выражает так называемый принцип суперпозиции (независимого наложения) электрических полей. Физический смысл этого свойства заключается в том, что электростатическое поле создается только покоящимися зарядами. Значит, поля различных зарядов «не мешают» друг другу, и поэтому суммарное поле системы зарядов можно подсчитать как вектор­ную сумму полей от каждого из них в отдельности.

Так как элементарный заряд весьма мал, а макроскопические тела содержат очень большое количество элементарных зарядов, то распределение зарядов по таким телам в большинстве случаев можно считать непрерывным. Для того чтобы описать как именно распределен (однородно, неоднородно, где зарядов больше, где их меньше и т. п.) заряд по телу введем плотности заряда следующих трех видов:

· объемная плотность заряда :

где dV - физически бесконечно малый элемент объема;

· поверхностная плотность заряда :

где dS - физически бесконечно малый элемент поверхности;

· линейная плотность заряда :

где - физически бесконечно малый элемент длины линии.

Здесь всюду - заряд рассматриваемого физически бесконечно малого элемента (объема, участка поверхности, отрезка линии). Под физически бесконечно малым участком тела здесь и ниже понимается такой его участок, который, с одной стороны, настолько мал, что в условиях данной задачи, его можно считать материальной точкой, а, с другой стороны, он настолько велик, что дискретностью заряда (см. соотношение) этого участка можно пренебречь.

Общие выражения для сил взаимодействия систем непрерывно распределенных зарядов приведены в Дополнении 2 в конце главы.

Пример 1. Электрический заряд 50 нКл равномерно распределен по тонкому стержню длиной 15 см. На продолжении оси стержня на расстоянии 10 см от ближайшего его конца находится точечный заряд 100 нКл (рис. 1.9). Определить силу взаимодействия заряженного стержня и точечного заряда.

Рис. 1.9. Взаимодействие заряженного стержня с точечным зарядом

Решение. В этой задаче силу F нельзя определить, написав закон Кулона в форме или (1.3). В самом деле, чему равно расстояние между стержнем и зарядом: r , r + a /2, r + a ? Поскольку по условиям задачи мы не имеем права считать, что a << r , применение закона Кулона в его исходной формулировке, справедливой только для точечных зарядов невозможно, необходимо использовать стандартный для таких ситуаций приём, который состоит в следующем.

Если известна сила взаимодействия точечных тел (например, закон Кулона) и необходимо найти силу взаимодействия протяженных тел (например, вычислить силу взаимодействия двух заряженных тел конечных размеров), то необходимо разбить эти тела на физически бесконечно малые участки, написать для каждой пары таких «точечных» участков известное для них соотношение и, воспользовавшись принципом суперпозиции, просуммировать (проинтегрировать) по всем парам этих участком.

Всегда полезно, если не сказать - необходимо, прежде чем приступать к конкретизации и выполнению расчета, проанализировать симметрию задачи. С практической точки зрения такой анализ полезен тем, что, как правило, при достаточно высокой симметрии задачи, резко сокращает число величин, которые надо вычислять, поскольку выясняется, что многие из них равны нулю.

Разобьём стержень на бесконечно малые отрезки длиной , расстояние от левого конца такого отрезка до точечного заряда равно .

Равномерность распределения заряда по стержню означает, что линейная плотность заряда постоянна и равна

Следовательно, заряд отрезка равен , откуда, в соответствии с законом Кулона, сила, действующая на точечный заряд q в результате его взаимодействия с точечным зарядом , равна

В результате взаимодействия точечного заряда q со всем стержнем , на него будет действовать сила

Подставляя сюда численные значения, для модуля силы получаем:

Из (1.5) видно, что при , когда стержень можно считать материальной точкой, выражение для силы взаимодействия заряда и стержня, как и должно быть, принимает обычную форму закона Кулона для силы взаимодействия двух точечных зарядов:

Пример 2. Кольцо радиусом несет равномерно распределенный заряд . Какова сила взаимодействия кольца с точечным зарядом q , расположенным на оси кольца на расстоянии от его центра (рис. 1.10).

Решение. По условию, заряд равномерно распределен на кольце радиусом . Разделив на длину окружности, получим линейную плотность заряда на кольце Выделим на кольце элемент длиной . Его заряд равен .

Рис. 1.10. Взаимодействия кольца с точечным зарядом

В точке q этот элемент создает электрическое поле

Нас интересует лишь продольная компонента поля, ибо при суммирова­нии вклада от всех элементов кольца только она отлична от нуля:

Интегрируя по находим электрическое поле на оси кольца на расстоянии от его центра:

Отсюда находим искомую силу взаимодействия кольца с зарядом q :

Обсудим полученный результат. При больших расстояниях до кольца величиной радиуса кольца под знаком радикала можно пренебречь, и мы получаем приближенное выражение

Это не удивительно, так как на больших расстояниях кольцо выглядит точечным зарядом и сила взаимодействия дается обычным законом Кулона. На малых расстояниях ситуация резко меняется. Так, при помещении пробного заряда q в центр кольца сила взаимодействия равна нулю. Это тоже не удивительно: в этом случае заряд q притягивается с равной силой всеми элементами кольца, и действие всех этих сил взаимно компенсируется.

Поскольку при и при электрическое поле равно нулю, где-то при промежуточном значении электрическое поле кольца максимально. Найдем эту точку, дифференцируя выражение для напряженности Е по расстоянию

Приравнивая производную нулю, находим точку где поле максимально. Оно равно в этой точке

Пример 3. Две взаимно перпендикулярные бесконечно длинные нити, несущие равномерно распределенные заряды с линейными плотностями и находятся на расстоянии а друг от друга (рис. 1.11). Как зависит сила взаимодействия между нитями от расстояния а ?

Решение. Сначала обсудим решение этой задачи методом анализа размерностей. Сила взаимодействия между нитями может зависеть от плотностей заряда на них, расстояния между нитями и электрической постоянной, то есть искомая формула имеет вид:

где - безразмерная постоянная (число). Заметим, что вследствие сим­метричного расположения нитей плотности заряда на них могут входить только симметричным же образом, в одинаковых степенях. Размерности входящих сюда величин в СИ известны:

Рис. 1.11. Взаимодействие двух взаимно перпендикулярных бесконечно длинных нитей

По сравнению с механикой здесь появилась новая величина - размерность электрического заряда. Объединяя две предыдущие формулы, получаем уравнение для размерностей:

Тела, имеющие определенный объем и линейные размеры, всегда занимают часть пространства, в котором не могут нахо-диться другие тела без изменения тех или иных характеристик. Там, где находится ка-мень, не может находиться ни другой ка-мень, ни металлический шар, ни любой другой вещественный объект.

Характерной особенностью электричес-кого поля является то, что, в отличие от ве-щества, в одной точке пространства могут находиться одновременно поля различных источников и различного происхождения. При этом каждое поле сохраняет свою ин-дивидуальность и ни одна из его характе-ристик не изменяется под влиянием другого поля. Одним из подтверждений этого явля-ется известный всем пример распростране-ния радиоволн, которые являются перемен-ным электромагнитным полем. Радиоволна, распространяющаяся с севера на юг, со-всем не влияет на волну, которая распро-страняется с запада на восток. И слушатель, принимая информацию, которую принесла первая волна, даже не догадывается, что эта волна «встретилась» с другой.

Подобное наблюдается и в том случае, когда есть определенная система заряжен-ных тел и соответствующих им полей.

Пусть в некоторой точке пространства A находится тело, имеющее положительный заряд Q 1 (рис. 4.33). Если в произвольную точку B внесем точечное тело с положи-тельным зарядом q 0 , то на него будет действовать сила F̅ 1 как результат взаимодей-ствия тела B с полем тела A.

В произвольную точку C внесем тело с зарядом Q 2 (рис. 4.34). Его поле будет действовать на тело B с силой F̅ 2 . Никаких изменений в значении силы F̅ 1 не произойдет. Но из механики известно, что, если на тело действует несколько сил, то их можно за-менить равнодействующей (рис. 4.35).

В случае нескольких источников элект-рического поля

F̅ = F̅ 1 + 2 + … + n .

Если левую и правую части уравнения разделить на q 0 , то получим

F̅ / q 0 = 1 / q 0 + 2 / q 0 + … + n / q 0 ,

= E̅ 1 + E̅ 2 + … + E̅ n .

Следовательно, при расчетах взаимодей-ствия заряженного тела с электрическими полями разных источников можно поль-зоваться понятием напряженности «суммар-ного» электрического поля. Этот вывод фор-мулируется как принцип суперпозиции по-лей . Материал с сайта

Принцип суперпозиции по-лей. Напряженность электрического поля си-стемы заряженных тел в любой точке рав-няется векторной сумме напряженностей по-лей отдельных тел в этой точке.

В математической форме этот принцип записывается так:

= E̅ 1 + E̅ 2 + … + n ,

где E̅ — напряженность поля системы заряженных тел; E̅ 1 , E̅ 2 … —напряженности по-лей каждого из тел, которые входят в си-стему.

Напряженность электрического поля тела, имеющего одинако-вое количество положительно и отрицательно заряженных ча-стиц, равняется нулю.

Принцип суперпозиции по-лей не огра-ничен количеством тел в системе. Именно поэтому напряженность электрического по-ля незаряженного тела, в состав которого входит огромное количество частиц с по-ложительными и отрицательными заряда-ми, практически равна нулю.

На этой странице материал по темам:

  • Как формулируется принцип суперпозиции полей

  • Принцип суперпозиции сил формула

  • Принцип суперпозиции электрических полей кратко

  • Принцип суперпозиции формула

  • Какое выражение является математической записью принципа суперпозиции полей?

Вопросы по этому материалу:

Закон Кулона описывает электрическое взаимодействие только двух покоящихся зарядов. Как же найти силу, действующую на некий заряд со стороны нескольких других зарядов? Ответ на этот вопрос дает принцип суперпозиции электрических полей:Напряженность электрического поля , созданного несколькими неподвижными точечными зарядами q 1 , q 2 ,..., q n , равна векторной сумме напряженностей электрических полей
, которые создавал бы каждый из этих зарядов в той же точке наблюдения в отсутствие остальных:

(1.5)

Другими словами, принцип суперпозиции утверждает, что сила взаимодействия двух точечных зарядов не зависит от того, подвергаются эти заряды действию других зарядов или нет.

Рис.1.6. Электрическое поле системы зарядов как суперпозиция полей отдельных зарядов

Итак, для системы N точечных зарядов (рис.1.6) на основании принципа суперпозиции результирующее поле определяется выражением

.

Напряженность электрического поля созданного в точке наблюдения системой зарядов равна векторной сумме напряженностей электрических полей, созданных в этой же точке наблюдения отдельными зарядами упомянутой системы.

Рис. поясняет принцип суперпозиции на примере электростатического взаимодействия трех заряженных тел.

Здесь важны 2 момента: векторное сложение и независимость поля каждого заряда от присутствия других зарядов. Если это мы будем говорить о достаточно точечных телах, о достаточно небольших размерах, тогда суперпозиция работает. Однако известно, что в достаточно сильных электрических полях этот принцип уже не работает.

1.7. Распределение зарядов

Часто дискретность распределения электрических зарядов бывает несущественна при расчете полей. При этом математические расчеты существенно упрощаются, если истинное распределение точечных зарядов заменить фиктивным непрерывным распределением.

Если дискретные заряды распределены в объеме, то при переходе к непрерывному распределению вводят понятие объемной плотности заряда по определению

,

где dq - заряд, сосредоточенный в объемеdV (рис.1.8,а).

Рис.1.8. Выделение элементарного заряда в случаях объемно заряженной области (а); поверхностно заряженной области (б); линейно заряженной области (в)

Если дискретные заряды расположены в тонком слое, то вводят понятие поверхностной плотности заряда по определению

,

где dq - заряд, приходящийся на элемент поверхности dS (рис.1.8,б).

Если дискретные заряды локализованы внутри тонкого цилиндра, вводят понятие линейной плотности заряда

,

где dq - заряд на элементе длины цилиндра dl (рис.1.8,в). С использованием введенных распределений выражение для электрического поля в точке А системы зарядов (1.5) запишется в виде

1.8. Примеры расчета электростатических полей в вакууме.

1.8.1. Полепрямолинейного отрезка нити (см. Орокс, примеры 1.9, 1.10) (Пример 1).

Найти напряженность электрического поля, созданного отрезком тонкой, однородно заряженной с линейной плотностью нити (см.рис). Углы 1 , 2 и расстояние r известны.

Отрезок разбивают на небольшие отрезки, каждый из которых относительно точки наблюдения можно считать точечным.
;

Случай полубесконечной нити;

Случай бесконечной нити:

Принцип суперпозиции

Допустим, что у нас есть три точечных заряда. Эти заряды взаимодействуют. Можно провести эксперимент и измерить силы, которые действуют на каждый заряд. Для того чтобы найти суммарную силу, с которой на один заряд действует второй и третий, необходимо силы, с которыми действуют каждый из них сложить по правилу параллелограмма. Возникает вопрос, равна ли измеряемая сила, которая действует на каждый из зарядов, сумме сил со стороны двух других, если силы рассчитаны по закону Кулона. Исследования показали, что измеряемая сила равна сумме вычисляемых сил в соответствии с законом Кулона со стороны двух зарядов. Такой эмпирический результат выражается в виде утверждений:

  • сила взаимодействия двух точечных зарядов не изменяется, если присутствуют другие заряды;
  • сила, действующая на точечный заряд со стороны двух точечных зарядов, равна сумме сил, действующих на него со стороны каждого из точечных зарядов при отсутствии другого.

Данное утверждение называется принципом суперпозиции. Этот принцип является одной из основ учения об электричестве. Он так же важен, как и закон Кулона. Его обобщение на случай множества зарядов очевидно. Если имеется несколько источников поля (количество зарядов N), то результирующую силу, действующую на пробный заряд q можно найти как:

\[\overrightarrow{F}=\sum\limits^N_{i=1}{\overrightarrow{F_{ia}}}\left(1\right),\]

где $\overrightarrow{F_{ia}}$ -- сила, с которой действует на заряд q заряд $q_i$ если остальные N-1 заряд отсутствуют.

Принцип суперпозиции (1) позволяет, используя закон взаимодействия между точечными зарядами, вычислить силу взаимодействия между зарядами, находящимися на теле конечных размеров. Для этого необходимо разбить каждый из зарядов на малые заряды dq, которые можно считать точечными, взять из попарно, вычислить силу взаимодействия и провести векторное сложение полученных сил.

Полевая трактовка принципа суперпозиции

Принцип суперпозиции имеет полевую трактовку: напряженность поля двух точечных зарядов равна сумме напряженностей, которые создаются каждым из зарядов, при отсутствии другого.

В общем случае принцип суперпозиции относительно напряженностей можно записать так:

\[\overrightarrow{E}=\sum{\overrightarrow{E_i}}\left(2\right).\]

где ${\overrightarrow{E}}_i=\frac{1}{4\pi {\varepsilon }_0}\frac{q_i}{\varepsilon r^3_i}\overrightarrow{r_i}\ $- напряжённость i-го точечного заряда, $\overrightarrow{r_i}\ $- радиус-вектор, проведённый от i-го заряда в точку пространства. Выражение (1) означает, что напряженность поля любого числа точечных зарядов равна сумме напряженностей полей каждого из точечных зарядов, если другие отсутствуют.

Подтверждено инженерной практикой, что принцип суперпозиции соблюдается вплоть до очень больших напряженностей полей. Очень значительные напряженности имеют поля в атомах и ядрах (порядка ${10}^{11}-{10}^{17}\frac{B}{м}$), но и для них использовали принцип суперпозиции в расчетах энергетических уровней атомов и данные расчетов совпали с данными экспериментов с большой точностью. Однако надо отметить, что при очень малых расстояниях (порядка $\sim {10}^{-15}м$) и экстремально сильных полях принцип суперпозиции, возможно, не выполняется. Так, к примеру, на поверхности тяжелых ядер напряженности достигают порядка $\sim {10}^{22}\frac{В}{м}$ принцип суперпозиции выполняется, но при напряженности ${10}^{20}\frac{В}{м}$ возникают квантово -- механические нелинейности взаимодействия.

Если заряд распределен непрерывно (нет необходимости учитывать дискретность), то суммарная напряженность поля найдется как:

\[\overrightarrow{E}=\int{d\overrightarrow{E}}\ \left(3\right).\]

В уравнении (3) интегрирование проводят по области распределения зарядов. Если заряды распределены по линии ($\tau =\frac{dq\ }{dl}-линейная\ плотность\ распределения\ заряда$), то интегрирование в (3) проводят по линии. Если заряды распределены по поверхности и поверхностная плотность распределения $\sigma =\frac{dq\ }{dS}$, то интегрируют по поверхности. Интегрирование проводят по объему, если имеют дело с объемным распределением заряда: $\rho =\frac{dq\ }{dV}$, где $\rho $ -- объемная плотность распределения заряда.

Принцип суперпозиции в принципе позволяет определить $\overrightarrow{E}$ для любой точки пространства по известному пространственному распределению заряда.

Пример 1

Задание: Одинаковые точечные заряды q находятся в вершинах квадрата со стороной a. Определите, какая сила, действует на каждый заряд со стороны других трех зарядов.

Изобразим силы, действующие на один из зарядов в вершине квадрата (выбор не важен, так как заряды одинаковы) (рис.1). Результирующую силу, действующую на заряд $q_1$, запишем как:

\[\overrightarrow{F}={\overrightarrow{F}}_{12}+{\overrightarrow{F}}_{14}+{\overrightarrow{F}}_{13}\ \left(1.1\right).\]

Силы ${\overrightarrow{F}}_{12}$ и ${\overrightarrow{F}}_{14}$ равны по модулю и могут быть найдены как:

\[\left|{\overrightarrow{F}}_{12}\right|=\left|{\overrightarrow{F}}_{14}\right|=k\frac{q^2}{a^2}\ \left(1.2\right),\]

где $k=9 {10}^9\frac{Нм^2}{{Кл}^2}.$

Модуль силы ${\overrightarrow{F}}_{13}$ найдем, также по закону Кулона, зная, что диагональ квадрата равна:

следовательно, имеем:

\[\left|{\overrightarrow{F}}_{13}\right|=k\frac{q^2}{2a^2}\ \left(1.4\right)\]

Направим ось OX как указано на рис. 1, спроектируем уравнение (1.1), подставим полученные модули сил, получим:

Ответ: Сила, действующая на каждый из зарядов в вершинах квадрата равна: $F=\frac{kq^2}{a^2}\left(\frac{2\sqrt{2}+1}{2}\right).$

Пример 2

Задание: Электрический заряд равномерно распределен вдоль тонкой нити в равномерной линейной плотностью $\tau $. Найдите выражение для напряженности поля на расстоянии $а$ от конца нити на ее продолжении. Длина нити равна $l$.

Выделим на нити точечный заряд $dq$, запишем для него из закона Кулона выражение для напряженности электростатического поля:

В заданной точке все векторы напряженности направлены одинаково, вдоль оси Х, поэтому, имеем:

Так как заряд по условию задачи равномерно распределен по нити с линейной плотностью $\tau $, то можно записать следующее:

Подставим (2.4) в уравнение (2.1), проинтегрируем:

Ответ: Напряженность поля нити в указанной точке вычисляется по формуле: $E=\frac{k\tau l}{a(l+a)}.$

Принцип суперпозиции (наложения) полей формулируется так:

Если в данной точке пространства различные заряженные частицы создают электрические поля , напряженности которых и т. д., то результирующая напряженность поля в этой точке равна: .

Принцип суперпозиции полей справедлив для случая, когда поля, созданные несколькими различными зарядами, не оказывают никакого влияния друг на друга, т. е. ведут себя так, как будто других полей нет. Опыт показывает, что для полей обычных интенсивностей, встречающихся в природе, это имеет место в действительности.

Благодаря принципу суперпозиции для нахождения напряжен-ности поля системы заряженных частиц в любой точке достаточно воспользоваться выражением напряженности поля точечного заряда.

На рисунке ниже показано, как в точке A определяется напряжен-ность поля , созданная двумя точечными зарядами q 1 и q 2 .

Силовые линии электрического поля.

Электрическое поле в пространстве принято представлять силовыми линиями. Понятие о силовых линиях ввел М. Фарадей при исследовании магнетизма. Затем это понятие было развито Дж. Максвеллом в исследованиях по электромагнетизму.

Силовая линия, или линия напряженности электрического поля, — это линия, касательная к которой и каждой ее точке совпадает с направлением силы, действующей на положительный точечный заряд, находящийся в этой точке поля.

На рисунках ниже изображены линии напряженности положительно заряженного шарика (рис. 1); двух разноименно заряженных шариков (рис. 2); двух одноименно заряженных ша-риков (рис. 3) и двух пластин, заряженных разными по знаку, но одинаковыми по абсолютной величине зарядами (рис. 4).

Линии напряженности на последнем рисунке почти параллельны в пространстве между пластинами, и плотность их одинакова. Это говорит о том, что поле в этой области пространства одно-родно. Однородным называется электрическое поле, напряженность которого одинакова во всех точках пространства.

В электростатическом поле силовые линии не замкнуты, они всегда начинаются на положительных зарядах и заканчиваются на отрицательных зарядах. Они нигде не пересекаются, пересе-чение силовых линий говорило бы о неопределенности направления напряженности поля в точке пересечения. Плотность силовых линий больше вблизи заряженных тел, где напряженность поля больше.

Поле заряженного шара.

Напряженность поля заряженного про-водящего шара на расстоянии от центра шара , превышающем его радиус r R . определяется по той же формуле, что и поля точечного заряда . Об этом свидетельствует распределение силовых линий (рис. а ), аналогичное распределению линий напряженности то-чечного заряда (рис. б ).

Заряд шара распределен равномерно по его поверхности. Внутри проводящего шара напряженность поля равна нулю.

  • Разделы сайта