Фосфин образуется при взаимодействии белого фосфора с. Что такое фосфин

Ca 3 (PO 4) 2 + 3SiO 2 + 5C = 3CaSiO 3 + 5CO + P 2

Пары фосфора при этой температуре почти полностью состоят из молекул Р 2 , которые при охлаждении конденсируются в молекулы Р 4 .

При конденсации паров образуется белый (желтый) фосфор , который состоит из молекул Р 4 , имеющих форму тетраэдра. Это очень реакционноспособное мягкое воскообразное вещество бледно-желтого цвета, растворимое в сероуглероде и бензоле. На воздухе фосфор воспламеняется при 34 о С. Он обладает уникальной способностью светиться в темноте за счет медленного окисления до низших . Именно белый фосфор и был в своё время выделен Брандом.

Если белый фосфор нагревать без доступа воздуха, он переходит в красный (впервые его получили лишь в 1847 г.). Название красный фосфор относится сразу к нескольким модификациям, различающихся по плотности и окраске: она колеблется от оранжевой до тёмно-красной и даже фиолетовой. Все разновидности красного фосфора нерастворимы в органических растворителях, по сравнению с белым фосфором они менее реакционноспособны (воспламеняются на воздухе при t>200 о С) и имеют полимерное строение: это тетраэдры Р 4 , связанные друг с другом в бесконечные цепи. Несколько отличен от них «фиолетовый фосфор», который состоит из группировок Р 8 и Р 9 , уложенных в длинные трубчатые структуры с пятиугольным сечением.

При повышенном давлении белый фосфор переходит в чёрный фосфор , построенный из объёмных шестиугольников с атомами фосфора в вершинах, связанных друг с другом в слои. Впервые это превращение осуществил в 1934 г. американский физик Перси Уильямс Бриджмен. Структура чёрного фосфора напоминает графит, с той лишь разницей, что слои, образованные атомами фосфора, не плоские, а «гофрированные». Черный фосфор – это наименее активная модификация фосфора. При нагревании без доступа воздуха он, как и красный, переходит в пар, из которого конденсируется белый фосфор.

Белый фосфор очень ядовит: смертельная доза около 0,1 г. Из-за опасности самовоспламенения на воздухе его хранят под слоем воды. Красный и чёрный фосфор менее ядовиты, так как нелетучи и практически нерастворимы в воде.


Химические свойства

Наиболее химически активным является белый фосфор (в уравнениях реакций с участием белого фосфора для простоты записывают как Р, а не Р 4 , тем более, что аналогичные реакции возможны и с участием красного фосфора, молекулярный состав которого неопределен). Фосфор непосредственно соединяется со многими простыми и сложными веществами. В химических реакциях фосфор, как и , может быть и окислителем, и восстановителем.

Как окислитель фосфор взаимодействует со многими с образованием фосфидов, например:

2P + 3Ca = Ca 3 P 2

P + 3Na = Na 3 P

Обратите внимание, что непосредственно с фосфор практически не соединяется.

Как восстановитель фосфор взаимодействует с , галогенами, серой (т.е. с более электроотрицательными неметаллами). При этом в зависимости от условий проведения реакций могут образовываться как соединения фосфора (III), так и соединения фосфора (V).

а) при медленном окислении или при недостатке кислорода фосфор окисляется до оксида фосфора (III), или фосфористого ангидрида Р 2 О 3:

4Р + 3О 2 = 2Р 2 О 3

При сгорании фосфора в избытке (или воздуха) образуется оксид фосфора (V), или фосфорный ангидрид Р 2 О 5:

4Р + 5О 2 = 2Р 2 О 5

б) в зависимости от соотношения реагентов при взаимодействии фосфора с галогенами и серой образуются соответственно галогениды и сульфиды трех- и пятивалентного фосфора; например:

2Р + 5Cl 2(изб.) = 2PCl 5

2P + 3Cl 2(недост.) = 2PCl 3

2P + 5S (изб.) = P 2 S 5

2P + 3S (недост.) = P 2 S 3

Следует отметить, что с йодом фосфор образует только соединение PI3.

Роль восстановителя фосфор играет в реакциях с кислотами-окислителями:

3P + 5HNO 3 + 2H 2 O = 3H 3 PO 4 + 5NO

— с концентрированной азотной кислотой:

P + 5HNO 3 = H 3 PO 4 + 5NO 2 + H 2 O

— с концентрированной серной кислотой:

2P + 5H 2 SO 4 = 2H 3 PO 4 + 5SO 2 + 2H 2 O

С другими кислотами фосфор не взаимодействует.

При нагревании с водными растворами фосфор подвергается диспропорционированию, например:

4P + 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2

8P + 3Ba(OH) 2 + 6H 2 O = 2PH 3 + 3Ba(H 2 PO 2) 2

Кроме фосфина РН 3 в результате этих реакций образуются соли фосфорноватистой кислоты Н 3 РО 2 – гипофосфиты, в которых фосфор имеет характерную степень окисления +1.

Применение фосфора

Основная часть производимого в мире фосфора расходуется на производство фосфорной кислоты, из которой получают удобрения и другие продукты. Красный фосфор используется при изготовлении спичек, он содержится в массе, которая наносится на спичечную коробку.

Фосфин

Наиболее известным водородным соединением фосфора является фосфин РН 3 . Фосфин – бесцветный газ с чесночным запахом, очень ядовит. Хорошо растворимый в органических растворителях. В отличие от аммиака малорастворим в воде. Практического значения фосфин не имеет.

Получение

Выше был рассмотрен способ получения фосфина при взаимодействии фосфора с водными растворами . Другой способ – действие соляной кислоты на фосфиды металлов, например:

Zn 3 P 2 + 6HCl = 2PH 3 + 3ZnCl 2

Химические свойства

  1. Кислотно – основные свойства

Будучи малорастворим в воде, фосфин образует с ней неустойчивый гидрат, который проявляет очень слабые основные свойства:

PH 3 + H 2 O ⇄ PH 3 ∙H 2 O ⇄ PH 4 + + OH —

Соли фосфония образуются только с :

PH 3 + HCl = PH 4 Cl

PH 3 + HClO 4 = PH 4 ClO 4

  1. Окислительно – восстановительные свойства

Весь список рефератов можно посмотреть

*на изображении записи фотография белого фосфора

Формула фосфина ………………………………………………………….....РН 3

Молекулярная масса …………………………………………………………34,04

Цвет и вид.......................................................Бесцветный газ.

Температура плавления............................................ - 133,5°С.

Температура кипения.................................................... -87,7°С.

Давление при испарении...............40 мм рт. ст. при - 129,4°С.

Растворимость в воде........................26% от объема при 17°С.

Плотность..........................1,18 (0°С, 760 мм рт. ст.) (Воздух-1).

Температура вспышки.....................................................100°С.

Нижний предел взрываемости........... 1,79-1,89% от объема;

Появление запаха при.....................................................1,3 - 2,6 ррт.

При сравнительно высоких концентрациях фосфин взрывоопасен.

Нижний концентрационный предел воспламеняемости (НКПВ) – 1,79-1,89%

по объему или ………………………………..26,15-27,60 г/м 3 , или 17000-18900 мл/м 3 .

Скрытая теплота испарения фосфина равна …………………………………102,6 кал/г.

Растворимость в воде составляет 0,52 г/л при температуре 20 0 С и давлении 34,2 кгс/см 2 .

Фосфин – высокотоксичный,бесцветный газ который тяжелее воздуха в 1,5 раза, поэтому при применении легко проникает во все щели и труднодоступные места в помещениях и эффективно уничтожает яйца, личинки, куколки и взрослых насекомых.
Плохо растворяется в воде, не реагирует с ней. Растворим в бензоле, диэтиловом эфире, сероуглероде. Фосфин сильно ядовит, действует на нервную систему, нарушает обмен веществ. ПДК = 0,1 мг/м³. Запах ощущается при концентрации 2-4 мг/м³, длительное вдыхание при концентрации 10 мг/м³ приводит к летальному исходу.

Применение фосфина. При проведении фумигации фосфином используются неорганические препараты на основе фосфидов алюминия и магния. Объекты и технология применения препаратов на основе фосфида магния идентичны с препаратами на основе фосфида алюминия. Допуск людей и загрузку складов разрешают после полного проветривания и при содержании фосфина в воздухе рабочей зоны не выше ПДК (0,1 мг/ м³). Реализацию продукции осуществляют при остатке фосфина не выше МДУ (0,1 мг/кг для зерна, 0,01 мг/кг – для продуктов переработки зерна).

Газ Фосфин является сильным ядом для человека и других теплокровных животных. Острое отравление фосфином происходит при концентрации его в воздухе – 568 мг/м3. Газ фосфин обладает высокой токсичностью в отношении насекомых – вредителей хлебных запасов. При работе с ним желательно иметь представление о способе и механизме действия на вредные организмы . Предельно допустимая концентрация (ПДК) фосфина в воздухе рабочей зоны сотавляет 0,1 мг/м3. Однако запах газа начинает ощущаться при меньших концентрациях (около 0,03 мг/м3). Максимально допустимый уровень (МДУ) фосфина в зерне – 0,01 мг/кг, в зернопродуктах остатки фосфина не допускаются. Зерно и продукты его переработки могут быть использованы для пищевых целей только при условии, если остаточные количества фосфина в них не будут превышать МДУ.

Газ Фосфин слабо сорбируется зерном и зернопродуктами, поэтому легко дегазируется. В рекомендуемых для дезинсекции нормах расхода он не изменяет качества зерна и не ухудшает его семенных достоинств. Впервые он был применен в 1934 г. для фумигации зерновой продукции. В настоящее время, ввиду запрета на применение бромистого метила в целях фумигации, фосфин является основным фумигантом, предназначенным для борьбы с вредными насекомыми.

Фосфор (от греч. phosphoros - светоносный; лат. Phosphorus) P, химический элемент V группы периодической системы; атомный номер 15, атомная масса 30,97376. Имеет один устойчивыйнуклид 31 P. Эффективное сечение захвата тепловыхнейтронов18 10 -30 м 2 . Конфигурация внеш. электронной оболочкиатома3s 2 3p 3 ; степени окисления-3, +3 и +5; энергия последовательной ионизации при переходе от Р 0 до P 5+ (эВ): 10,486, 19,76, 30,163, 51,36, 65,02; сродство к электрону 0,6 эВ;электроотрицательностьпо Полингу 2,10;атомный радиус0,134 нм,ионные радиусы(в скобках указаны координационные числа) 0,186 нм для P 3- , 0,044 нм (6) для P 3+ , 0,017 нм (4), 0,029 нм (5), 0,038 нм (6) для P 5+ .

Среднее содержание фосфора в земной коре 0,105% по массе, в водеморей и океанов 0,07 мг/л. Известно около 200 фосфорныхминералов. все они представляют собой фосфаты. Из них важнейший -апатит, который является основойфосфоритов. Практическое значение имеют также монацит CePO 4 , ксенотим YPO 4 , амблигонит LiAlPO 4 (F, ОН), трифилин Li(Fe, Mn)PO 4 , торбернит Cu(UO 2) 2 (PO 4) 2 12H 2 O, отунит Ca(UO 2) 2 (PO 4) 2 x x 10H 2 O, вивианит Fe 3 (PO 4) 2 8H 2 O, пироморфит Рb 5 (РО 4) 3 С1, бирюза СuА1 6 (РО 4) 4 (ОН) 8 5Н 2 О.

Свойства. Известно св. 10 модификаций фосфора, из них важнейшие - белый, красный и черный фосфор (технический белый фосфор называют желтым фосфором). Единой системы обозначений модификаций фосфора нет. Некоторые свойства важнейших модификаций сопоставлены в табл. Термодинамически устойчив при нормальных условиях кристаллический черный фосфор (P I). Белый и красный фосфор метастабильны, но вследствие малой скорости превращения могут практически неограниченное время сохраняться при нормальных условиях.

Соединения фосфора с неметаллами

Фосфор и водород в виде простых веществ практически не взаимодействуют. Водородные производные фосфора получают косвенным путем, например:

Са 3 Р 2 + 6НСl = 3СаСl 2 + 2РН 3

Фосфин РН 3 представляет собой бесцветный сильнотоксичный газ с запахом гнилой рыбы. Молекулу фосфина можно рассматривать как молекулу аммиака. Однако угол между связями Н-Р-Н значительно меньше, чем у аммиака. Это означает уменьшение доли участия s-облаков в образовании гибридных связей в случае фосфина. Связи фосфора с водородом менее прочны, чем связи азота с водородом. Донорные свойства у фосфина выражены слабее, чем у аммиака. Малая полярность молекулы фосфина, и слабая активность акцептировать протон приводят к отсутствию водородных связей не только в жидком и твердом состояниях, но и с молекулами воды в растворах, а также к малой стойкости иона фосфония РН 4 + . Самая устойчивая в твердом состоянии соль фосфония - это его иодид РН 4 I. Водой и особенно щелочными растворами соли фосфония энергично разлагаются:

РН 4 I + КОН = РН 3 + КI + Н 2 О

Фосфин и соли фосфония являются сильными восстановителями. На воздухе фосфин сгорает до фосфорной кислоты:

РН 3 + 2О 2 = Н 3 РО 4

При разложении фосфидов активных металлов кислотами одновременно с фосфином образуется в качестве примеси дифосфин Р 2 Н 4 . Дифосфин - бесцветная летучая жидкость, по структуре молекул аналогична гидразину, но фосфин не проявляет основных свойств. На воздухе самовоспламеняется, при хранении на свету и при нагревании разлагается. В продуктах его распада присутствуют фосфор, фосфин и аморфное вещество желтого цвета. Этот продукт получил название твердого фосфористого водорода, и ему приписывается формула Р 12 Н 6 .

С галогенами фосфор образует три- и пентагалогениды. Эти производные фосфора известны для всех аналогов, но практически важны соединения хлора. РГ 3 и РГ 5 токсичны, получают непосредственно из простых веществ.

РГ 3 - устойчивые экзотермические соединения; РF 3 - бесцветный газ, РСl 3 и РВr 3 - бесцветные жидкости, а РI 3 - красные кристаллы. В твердом состоянии все тригалогениды образуют кристаллы с молекулярной структурой. РГ 3 и РГ 5 являются кислотообразующими соединениями:

РI 3 + 3Н 2 О = 3НI + Н 3 РО 3

Известны оба нитрида фосфора, отвечающие трех- и пятиковалентному состояниям: РN и Р 2 N 5 . В обоих соединениях азот трехвалентен. Оба нитрида химически инертны, устойчивы к действию воды, кислот и щелочей.

Расплавленный фосфор хорошо растворяет серу, но химическое взаимодействие наступает при высокой температуре. Из сульфидов фосфора лучше изучены Р 4 S 3 , Р 4 S 7 , Р 4 S 10 . Указанные сульфиды могут быть перекристализованы в расплаве нафталина и выделены в виде желтых кристаллов. При нагревании сульфиды воспламеняются и сгорают с образованием Р 2 О 5 и SО 2 . Водой все они медленно разлагаются с выделением сероводорода и образованием кислородных кислот фосфора.

Соединения фосфора с металлами

С активными металлами фосфор образует солеобразные фосфиды, подчиняющиеся правилам классической валентности. р-Металлы, а также металлы подгруппы цинка дают и нормальные, и анионоизбыточные фосфиды. Большинство из этих соединений проявляют полупроводниковые свойства, т.е. доминирующая связь в них - ковалентная. Отличие азота от фосфора, обусловленное размерным и энергетическим факторами, наиболее характерно проявляется при взаимодействии этих элементов с переходными металлами. Для азота при взаимодействии с последними главным является образование металлоподобных нитридов. Фосфор также образует металлоподобные фосфиды. Многие фосфиды, особенно с преимущественно ковалентной связью, тугоплавки. Так, АlР плавится при 2197 град.С, а фосфид галлия имеет температуру плавления 1577 град.С. Фосфиды щелочных и щелочно-земельных металлов легко разлагаются водой с выделением фосфина. Многие фосфиды являются не только полупроводниками (АlР, GаР, InР), но и ферромагнетиками, например СоР и Fе 3 Р.

Фосфи́н (фосфористый водород , гидрид фосфора, по номенклатуре IUPAC - фосфан РН 3) - бесцветный, очень ядовитый, довольно неустойчивый газ со специфическим запахом гнилой рыбы.

Бесцветный газ. Плохо растворяется в воде, не реагирует с ней. При низких температурах образует твердый клатрат 8РН 3 ·46Н 2 О. Растворим в бензоле, диэтиловом эфире, сероуглероде. При −133,8 °C образует кристаллы с гранецентрированной кубической решёткой.

Молекула фосфина имеет форму тригональной пирамиды c молекулярной симметрией C 3v (d PH = 0.142 нм, HPH = 93.5 o). Дипольный момент составляет 0,58 D, существенно ниже, чем уаммиака. Водородная связь между молекулами PH 3 практически не проявляется и поэтому фосфин имеет более низкие температуры плавления и кипения.

Фосфин сильно отличается от его аналога аммиака. Его химическая активность выше, чем у аммиака, он плохо растворим в воде, как основание значительно слабее аммиака. Последнее объясняется тем, что связи H-P поляризованы слабо и активность неподелённой пары электронов у фосфора (3s 2) ниже, чем у азота (2s 2) в аммиаке.

В отсутствие кислорода при нагревании разлагается на элементы:

на воздухе самопроизвольно воспламеняется (в присутствии паров дифосфина или при температуре свыше 100 °C):

Проявляет сильные восстановительные свойства:

При взаимодействии с сильными донорами протонов фосфин может давать соли фосфония, содержащие ион PH 4 + (аналогичноаммонию). Соли фосфония, бесцветные кристаллические вещества, крайне неустойчивы, легко гидролизуется.

Как и сам фосфин, так и его соли являются сильными восстановителями.

Получают фосфин при взаимодействии белого фосфора с горячей щёлочью, например:

Также его можно получить воздействием воды или кислот на фосфиды:

Возможен синтез непосредственно из элементов:

Хлористый водород при нагревании взаимодействует с белым фосфором:

Разложение йодида фосфония:

Разложение фосфоновой кистоты:

или её восстановление.

Обнаружив ошибку на странице, выделите ее и нажмите Ctrl + Enter

Получение фосфина

При нагревании белого фосфора с крепким раствором щелочи фосфор диспропорционирует, в результате образуется фосфат и фосфин PH 3 . Одновременно с фосфином образуется небольшое количество дифосфина P 2 H 4 (фосфористый аналог гидразина), который легко вспыхивает на воздухе. Одновременно образуется водород. Если газоотводную трубку направить под воду, пузырьки фосфина всплывая вспыхивают; при этом образуются кольца белого дыма.

Приведем описание опыта из практикума Рипан Р. Четяну И. Руководство к практическим работам по неорганической химии .

Получение фосфористого водорода нагреванием белого фосфора с 30-50%-ным раствором едкого кали. Уравнение реакции:

4P + 3KOH + 3H 2 O = PH 3 + 3KH 2 PO 2

При этом способе получения кроме газообразного фосфористого водорода образуется также жидкий фосфористый водород, газообразный водород и кислый гипофосфит калия по уравнениям:

6P + 4KOH + 4H 2 O = P 2 H 4 + 4KH 2 PO 2
2P + 2KOH + 2H 2 O = H 2 + 2KH 2 PO 2

Жидкий фосфористый водород, взаимодействуя с гидроксидом калия в водной среде, образует газообразный фосфористый водород, водород и кислый гипофосфит калия по уравнениям:

2P 2 H 4 + KOH + H 2 O = 3PH 3 + KH 2 PO 2
P 2 H 4 + 2KOH +2H 2 O = 3H 2 + 2KH 2 PO 2

Кислый гипофосфит калия в щелочной среде превращается в ортофосфат калия с выделением водорода:

KH 2 PO 2 + 2KOH = 2H 2 + K 3 PO 4

Согласно приведенным уравнениям реакций, при нагревании белого фосфора с гидроксидом калия образуется газообразный фосфористый водород, водород и ортофосфат калия.

Полученный этим способом фосфин самопроизвольно воспламеняется. Это происходит потому, что он содержит некоторое количество паров самовоспламеняющегося жидкого фосфористого водорода (дифосфин) и водород.

Вместо гидроксида калия можно воспользоваться гидратами окиси натрия, кальция или бария. Реакции с ними протекают аналогично.

Прибором служит круглодонная колба емкостью 100-250 мл, плотно закрытая резиновой пробкой, через которую должна быть плотно пропущена трубка, направляющая газообразные продукты в кристаллизатор с водой.

Колбу на 3/4 ее объема заполняют 30-50%-ным раствором едкого кали, в который бросают 2-3 кусочка белого фосфора, величиной с горошину. Колбу укрепляют в зажиме штатива и с помощью газоотводной трубки соединяют с кристаллизатором, наполненным водой (см. рисунок).

При нагревании колбы гидроксид калия реагирует с белым фосфором согласно приведенным выше уравнениям.

Жидкий фосфористый водород (дифосфин), достигнув поверхности жидкости в колбе, сразу же воспламеняется и сгорает в виде искр; это происходит до тех пор, пока не будет израсходован оставшийся в колбе кислород.

При сильном нагревании колбы жидкий фосфористый водород перегоняется и над водой воспламеняется газообразный фосфористый водород и водород. Фосфористый водород сгорает желтым пламенем, образуя фосфорный ангидрид в виде белых колец дыма.

По окончании опыта уменьшают пламя под колбой, вынимают пробку с отводной трубкой, прекращают нагревание и оставляют прибор под тягой до его полного охлаждения.

Неизрасходованный фосфор тщательно промывают водой и сохраняют для последующих опытов.

Мы решили получить фосфин. В пробирку насыпали едкого натра и налили до половины воды. Часть щелочи осталась в осадке. Пробирку закрепили наклонно в штативе, положили в нее кусочек желтого фосфора размером с горошину и закрыли пробкой с газоотводной трубкой, конец которой опустили в кристаллизатор с водой. Начали нагрев.

В кристаллизаторе стали пробулькивать пузырьки газа. Со временем начались желтые вспышки, сопровождаемые хлопками: пузырьки лопались и загорались на воздухе. После вспышек часто образовывались красивые белые дымовые кольца, которые поднимались вверх.

По нашим наблюдениям опыт лучше всего получался тогда, когда жидкость в пробирке активно кипела и происходил проброс части жидкости в воду кристаллизатора. В некоторых случаях оказывалось, что вспышки происходили реже и слабее, если конец газоотводной трубки слишком глубоко опустить в воду.

В целом "фейерверк с дымовыми кольцами" продолжался до нескольких минут. Можно с уверенностью сказать, что это один из самых красивых опытов.

________________________________________

  • Разделы сайта