Э. Н

Введение

1. Возникновение и история теории хаоса

2. Порядок и беспорядок

3. Прикладной хаос

4. Основные принципы хаоса (аттракторы и фракталы)

5. Детерминированный хаос и информационные технологии

6. Хаоса в других науках

7. Последствия хаоса


1.Начиная с рубежа 1980-х - 1990-х годов в дискуссиях историков-методологов появилось новое направление, связанное с "наукой о сложном" (complexity sciences). Так принято называть новую междисциплинарную область исследований, в центре внимания которой находятся проблемы исследования систем с нелинейной динамикой, неустойчивым поведением, эффектами самоорганизации, наличием хаотических режимов. Единая наука о поведении сложных систем, самоорганизации в Германии названа синергетикой (Г. Хакен), во франкоязычных странах - теорией диссипативных структур (И. Пригожин), в США - теорией динамического хаоса (М. Фейгенбаум). В отечественной литературе принят преимущественно первый термин, наиболее краткий и емкий.

ТЕОРИЯ ХАОСА - раздел математики, изучающий кажущееся случайным или очень сложное поведение детерминированных динамических систем. Динамическая система – это такая система, состояние которой меняется во времени в соответствии с фиксированными математическими правилами; последние обычно задаются уравнениями, связывающими будущее состояние системы с текущим. Такая система детерминирована, если эти правила не включают явным образом элемента случайности.

История теории хаоса . Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта. Эдвард Лоренц в свое время рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Этот его подход был очень похож на известные слова Архимеда: "Дайте мне точку опоры, и я переверну весь мир".

Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: " Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно.

Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем.

Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму.

Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно.

В 1926–1927 голландский инженер Б.Ван-дер-Пол сконструировал электронную схему, соответствующую математической модели сердечных сокращений. Он обнаружил, что при определенных условиях возникающие в схеме колебания были не периодическими, как при нормальном сердцебиении, а нерегулярными. Его работа получила серьезное математическое обоснование в годы Второй мировой войны, когда Дж.Литтлвуд и М.Картрайт исследовали принципы радиолокации.

В 1950 Дж.фон Нейман предположил, что неустойчивость погоды может в один прекрасный день обернуться благом, поскольку неустойчивость означает, что желаемый эффект может быть

В начале 1960-х годов американский математик С.Смейл попытался построить исчерпывающую классификацию типичных разновидностей поведения динамических систем. Поначалу он предполагал, что можно обойтись различными комбинациями периодических движений, но вскоре понял, что возможно значительно более сложное поведение. В частности, он подробнее исследовал открытое Пуанкаре сложное движение в ограниченной задаче трех тел, упростив геометрию и получив при этом систему, известную ныне как «подкова Смейла». Он доказал, что такая система, несмотря на ее детерминированность, проявляет некоторые черты случайного поведения. Другие примеры подобных явлений были разработаны американской и российской школами в теории динамических систем, причем особенно важным оказался вклад В.И.Арнольда. Так начала возникать общая теория хаоса.

То, что чувствительность к начальным данным ведет к хаосу, понял - и тоже в 1963 году - американский метеоролог Эдвард Лоренц . Он задался вопросом: почему стремительное совершенствование компьютеров не привело к воплощению в жизнь мечты метеорологов - достоверному среднесрочному (на 2-3 недели вперед) прогнозу погоды? Эдвард Лоренц предложил простейшую модель, описывающую конвекцию воздуха (она играет важную роль в динамике атмосферы), просчитал ее на компьютере и не побоялся всерьез отнестись к полученному результату. Этот результат - динамический хаос- есть непериодическое движение в детерминированных системах (то есть в таких, где будущее однозначно определяется прошлым), имеющее конечный горизонт прогноза.

С точки зрения математики можно считать, что любая динамическая система, что бы она ни моделировала, описывает движение точки в пространстве, называемом фазовым. Важнейшая характеристика этого пространства - его размерность, или, попросту говоря, количество чисел, которые необходимо задать для определения состояния системы. С математической и компьютерной точек зрения не так уж и важно, что это за числа - количество рысей и зайцев на определенной территории, переменные, описывающие солнечную активность или кардиограмму, или процент избирателей, до сих пор поддерживающих президента. Если считать, что точка, двигаясь в фазовом пространстве, оставляет за собой след, то динамическому хаосу будет соответствовать клубок траекторий. Здесь размерность фазового пространства всего 3. Замечательно, что такие удивительные объекты существуют даже в трехмерном пространстве.


2. Порядок и беспорядок

Теория хаоса является достаточно общей, чтобы охватить широкий круг явлений нашего мира и при этом будоражит воображение читателей. Ведь оказалось, что порядок возникает именно из хаоса, а не откуда-нибудь еще! С другой стороны, в современных научных представлениях о хаосе есть много моментов, требующих пристального внимания и углубленного изучения. Пожалуй, вопросов тут больше, чем ответов.

Порядок и беспорядок

Из соображений, которые, возможно, станут ясны ниже, вначале мы обратимся к двум исключительно важным понятиям современной науки: «порядок» и «беспорядок». Обычно нам кажется, что здесь все с самого начала ясно и понятно, но на самом деле это далеко не так. И понятие хаоса, в известной мере, становится интересным и важным именно потому, что только порядком и беспорядком нам тут не обойтись.

Прежде всего – что такое порядок и что такое беспорядок? В каком отношении они находятся друг с другом? И как отличить одно от другого? Вопросы эти, оказывается, отнюдь не тривиальны, в чем мы скоро убедимся.

В повседневной жизни принято полагать, что беспорядок – это отсутствие порядка. Такие понятия встречаются довольно часто, например «холод». Мы употребляем его на каждом шагу и понимаем, что имеется в виду. Более того, мы даже «измеряем» его с помощью термометра. И, тем не менее, холода как такового не существует. Существует тепло, а холод на самом деле является его недостатком. Но мы говорим «холод» так, как будто бы он был чем-то реальным (или, как говорят философы, субстанциальным).

А вот с понятием «беспорядок» все, в известном смысле, обстоит наоборот. Мы используем это слово как обозначение отсутствия чего-то (порядка), что именно и существует само по себе. Но возникает вопрос: а так ли это?

Поясним суть дела на конкретном примере, для чего представим себе письменный стол некоего профессора. Глядя на него, мы, вероятно, решим что все, что находится на нем, свалено в беспорядочную кучу. Однако сам профессор, не глядя, протягивая руку, безошибочно находит нужный ему предмет. И напротив, если уборщица разложит все аккуратными стопками, то профессор не сможет работать так же, как не смогла готовить бабушка в романе Рэя Брэдбери «Вино из одуванчиков» после генеральной уборки, устроенной на кухне тетей.

Может быть, следует признать, что то, что мы привыкли называть беспорядком отнюдь не является отсутствием того, что обычно называют порядком? Впрочем, есть и другой путь: оставить за словом «беспорядок» его привычное значение, и ввести в оборот другой термин для обозначения того, что мы часто, не задумываясь, также называем беспорядком, хотя в действительности имеем в виду нечто совершенно иное.

Теория хаоса! Научный прорыв хаоса!

Теория хаоса!

Теория хаоса! Научный прорыв хаоса!

Теория хаоса - это метод научных исследований и математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос (динамический хаос, детерминированный хаос).

Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса.

Примеров подобных систем достаточно много.

Например: галактический каннибализм, атмосфера земли, турбулентные потоки в атмосфере.

Примеры, в живой природе: биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием.

Теория хаоса! История!

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие, зачастую случайные, изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в каком-то смысле, то же являются упорядоченными. Такое использование слова «хаос» существенно отличается от его обычного значения. Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Теория хаоса! История!

Первым исследователем хаоса и хаотичных систем был Анри Пуанкаре. В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты, которые постоянно и не удаляются и не приближаются к конкретной точке.

В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова.

Несмотря на попытки понять хаос, присущий многим природным явлениям и системам, в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия.

Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении, например простые «помехи», в теории хаоса считали полноценной составляющей изучаемой системы.

Основным катализатором для развития теории хаоса стало изобретение электронно-вычислительных машин. Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную весьма трудоёмко. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из пионеров в теории хаоса был Эдвард Лоренц, интерес которого к хаосу появился случайно, когда он в 1961 году проводил работы по предсказанию погоды.

Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз. К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде.

Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта.

Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели.

Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя», который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа» в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Бенуа Мандельброт утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.

Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Бенуа Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

Советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса.

Теория хаоса! История!

27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности аж до до 1970 года.

В декабре 1977 года Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу, Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц.

В следующем году, 1978 году, Митчелл Фейгенбаум издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. Митчелл Фейгенбаум применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям.

В 1979 году Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике совместно с Митчеллом Дж. Фейгенбаумом «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах».

В 1986 году, Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников.

Это привело дало толчок к широкому применению теории хаоса в физиологии и в медицине в 1980-х годах, например в изучении патологии сердечных циклов.

В 1987 году Пер Бак, Чао Тан и Курт Висенфелд напечатали статью, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем.

Концепция системы самодостаточности (СС) стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию.

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример системы самодостаточности (СС) возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В том же 1987 году Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию.

Теория хаоса! История!

Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем».

Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Теория хаоса! История!

Теория хаоса! Анализ нелинейных систем!

Доступность для ученых более мощных компьютеров расширила возможности изучения сложных нелинейных систем, и расширила возможности практического применения теории хаоса.

Теория хаоса! История!

К наиболее известным исследователям нелинейных систем и систем с хаотичными характеристиками принято причислять: французского физика и философа Анри Пуанкаре, который доказал теорему о возвращении, советских математиков А. Н. Колмогорова и В. И. Арнольда, немецкого математика Ю. К. Мозера. В результате их усилий была создана теория хаоса, которую часто называют КАМ (теория Колмогорова - Арнольда - Мозера).

Теория хаоса КАМ вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы, так называемых КАМ-торов.

Хаос! Теория хаоса. Теория анализа нелинейных систем.

Хаос! Научное понимание научного хаоса!

В бытовом контексте слово «хаос» означает «абсолютный беспорядок».

Сразу отметим, что в теории хаоса прилагательное хаотичный определяется более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение «хаос» говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:

Она должна быть чувствительна к начальным условиям;

Она должна иметь свойство топологического смешивания;

Её периодические орбиты должны быть всюду плотными.

Более точные математические условия возникновения хаоса выглядят так:

Система, которую ученые относят к системе «хаоса» должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5.

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотичной, она должна быть нелинейной. По теореме Пуанкаре-Бендиксона (Poincar-Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трёх измерений или неевклидова геометрия).

Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.

Хаос! Научное понимание хаоса!

Чувствительность к начальным условиям. Что означает чувствительность к начальным условиям?

Чувствительность к начальным условиям в системе «хаоса» означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки».

Данный термин «эффект бабочки» получил распространение после появления статьи «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне.

Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Хаос! Научное понимание хаоса!

Топологическое смешивание. Что означает термин топологическое смешивание?

Топологическое смешивание в динамике хаоса означат такую схему расширения системы, когда одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкостей.

Хаос! Научное понимание хаоса!

Чувствительность хаотичной системы. Тонкости понимания.

В популярных работах чувствительность хаотичной системы к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы.

Например, наблюдаем простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше.

Хаос! Научное понимание хаоса!

Аттракторы.

Аттрактор - это некоторое множество состояний (точнее - точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотичными всегда, но в большинстве случаев хаотичное поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотичного поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты.

Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Хаос! Научное понимание хаоса!

Странные аттракторы.

Большинство типов движения описывается простыми аттракторами, являющимися ограниченными циклами.

Хаотическое движение описывается странными аттракторами, которые очень сложны и имеют много параметров.

Например, простая трехмерная система погоды описывается известным аттрактором Лоренца (Lorenz) - одной из самых известных диаграмм хаотических систем, не только потому, что она была одной из первых, но и потому, что она одна из самых сложных.

Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений. Однако это ограничение не работает для дискретных динамических систем.

Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел, испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением.

Хаос! Научное понимание хаоса!

Простые хаотические системы.

Хаотическими могут быть и простые системы без дифференциальных уравнений. Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений. Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений. Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хаос! Научное понимание хаоса!

Математическая теория.

Теорема Шарковского - это основа доказательства Ли и Йорке (Li and Yorke) (1975) о том, что одномерная система с регулярным тройным периодом цикла может отобразить регулярные циклы любой другой длины так же, как и полностью хаотических орбит.

Ученые математики изобрели много дополнительных способов для описания и исследования хаотических систем на основе количественных показателей. Сюда входят: рекурсивное измерение аттрактора, экспоненты Ляпунова, графики рекуррентного соотношения, отображение Пуанкаре, диаграммы удвоения и оператор сдвига.

Хаос! Научное понимание хаоса!

Научное понимание хаотичных систем помогает решать сложные современные задачи в изучении окружающего нас мира.

Это относится к прогнозам погоды, землетресений, извержений вулканов, космическим явлениям, межпланетным полетам, и другим сложным процессам.

Теория хаоса продолжает быть очень активной областью научных изысканий, привлекая к своим исследованиям много разных дисциплин.

Можно отметить, что и теория хаоса позволила добиться новых достижений в области таких наук, как: математика, пространственная геометрия, топология, физика, биология, метеорология, астрофизика, теория информации, космология, социология, конфликтология и другие.

Теория хаоса! Научный прорыв хаоса! Научное понимание хаоса! Анализ нелинейных систем! Теория хаоса - это область нелинейных исследований!

Изучение комплексных и динамических систем для выявления закономерностей порядка (нехаоса) из очевидных хаотичных явлений. Объяснение Chaos Theory (Теория хаоса) Lorenz ("60) и Poincaré. (ca 1900)

Что такое Chaos Theory (Теория хаоса) ? Описание

Методом Chaos Theory (Теория хаоса) от Lorenz и Poincaré будет методика можно использовать для систем изучать сложных и динамических для того чтобы показать закономерности порядка (нехаоса) из по-видимому хаотичных поведений.

«Chaos Theory (Теория хаоса) - Качественное изучение неустойчивого апериодического поведения в детерминистических нелинейных динамичных системах» (Kellert, 1993, P. 2). Апериодическое поведение наблюдается, когда нет ни одной переменной, описывающей состояние системы, которое испытывает регулярное повторение значений. Неустойчивое апериодическое поведение очень сложно: оно никогда не повторяется и проявляет эффект любого небольшого возмущения.

Согласно сегодняшней математической теории хаотичная система характеризуется «чувствительностью к начальным условиям». Другими словами, для того чтобы предсказать будущее состояние системы с определенностью, вам необходимо знать начальные условия с огромной точностью, в виду того что ошибки увеличиваются быстро из-за даже самой небольшой неточности.

Поэтому погоду настолько трудно прогнозировать. Теория также применялась к экономическим циклам, динамике животных популяций, в движении текучей среды, области планетарных орбит, электрического тока в полупроводниках, медицинских состояний (например, эпилептический припадок) и моделировании гонки вооружений.

Во 1960-х Edward Lorenz, метеоролог из MIT, работал над проектом по имитации закономерностей погоды на компьютере. Он случайно столкнулся с Эффектом бабочки (butterfly effect) после того, как отклонения в вычислениях на тысячные доли в значительной степени меняли процесс имитации. Эффект бабочки показывает, как изменения небольшого маштаба могут оказывать влияние на вещи большого масштаба. Это классический пример хаоса, где небольшие изменения могут повлечь большие изменения. Бабочка, хлопая своими крыльями в Гон Конге, может изменить закономерности торнадо в Техасе.

Chaos Theory (Теория хаоса) рассматривает организации/бизнес группы как сложные, динамические, нелинейные, созидательные и далекие от состояния равновесия системы. Их будущие результаты нельзя предсказать на основе прошлых и текущих событий и действий. В состоянии хаоса, организации одновременно ведут себя непредсказуемо (хаотично) и систематично (упорядоченно).

Происхождение Теории хаоса. История

Ilya Prigogine, лауреат Нобелевской премии, показал, что сложные структуры могут происходить от более простых. Это как порядок исходящий из хаоса. Henry Adams ранее описал данное явление цитатой «Chaos often breeds life, when order breeds habit». Однако Henri Poincaré был настоящим «отцом-основателем теории хаоса» . Планета Нептун была открыта в 1846 и была предсказана на основе наблюдений отклонений в орбите Урана. Король Норвегии Oscar II был готов дать награду любому, кто бы смог доказать или опровергнуть то, что солнечная система устойчива. Poincaré предложил свое решение, но когда его друг нашел ошибку в его вычислениях, награду отобрали до тех пор, пока он не смог придумать новое решение. Poincaré пришел к выводу, что решения не было. Даже законы Isaac Newton не помогали в решении этой огромной проблемы. Poincaré пытался найти порядок в системе, где его не было. Теория хаоса была сформулирована в 1960-х. Значительная и более практическая работа была проделана Edward Lorenz в 1960-х. Название хаос было придуманно Jim Yorke, ученым в области прикладной математики в университете Maryland (Ruelle, 1991).

Вычисление Chaos Theory (Теория хаоса)? Формула

В применении Теории хаоса, одиночная переменная x (n) = x (t0 + nt) с начальным временем, t0, и временем задержки, t, обеспечивает n-мерное пространство, или фазовое пространство, которое представляет собой все многомерное пространство состояния системы; может потребоваться до 4 измерений для того, чтобы представить фазовое пространство хаотичной системы. Таким образом, в течение длительного периода времени, анализируемая система выработает закономерности в рамках нелинейного временного ряда, что можно использовать для предсказания будущих состояний (Solomatine et al, 2001).

Применение Теории хаоса. Формы применения

Принципы Теории хаоса были успешно использованы для описания и объяснения разнообразных естественных и искусственных явлений. Such as:

    Предсказание эпилептических припадков. Предсказание финансовых рынков. Моделирование систем производства. Прогнозы погоды. Создание фракталов. Сгенерированные компьютером изображения с использованием принципов Chaos Theory (Теория хаоса) . (См. на этой странице.)

В условиях, когда Бизнес работает в неустойчивой, сложной и непредсказуемой среде, принципы Теории хаоса могут быть весьма ценны. Области применения могут включать:

    Бизнес стратегия/Корпоративная стратегия. Сложный процесс принятия решений. Социальные науки. Организационное поведение и организационное изменение. Сравните: Causal Model of Organizational Performance and Change (Причинно-следственная модель организационной деятельности и изменения) Поведение на фондовой биржи, инвестирование.

Стадии в Теории хаоса. Процесс

Для того, чтобы контролировать хаос, необходимо контролировать систему или процесс хаоса. Для контролирования системы, необходимы:

Цель, задача, которые система должна достигнуть и выполнить. Для системы с предсказуемым поведением (детерминистическим) это может быть определенное состояние системы. Система способная достигать цель или выполнять поставленные задачи. Некоторое способы оказания влияния на поведение системы. Включают Параметры контроля/control inputs (решения, правила принятия решений или начальные состояния).

Преимущества Теории хаоса. Преимущества

Теория хаоса имеет широкое применение в современном науке и технике. Коммуникация и менеджмент могут стать свидетелями смещения парадигмы, как и некоторые другие области бизнеса. Исследования и изучение этой области в академической среде могут быть весьма полезны для бизнеса и финансового мира.

Ограничения Теории хаоса. Недостатки

Ограничения применения Теории хаоса связаны, главным образом, с выбором вводных параметров. Методы, выбранные для вычисления этих параметров зависят от динамики, лежащей в основе данных и вида анализа, которая в большинстве случаев очень сложна и не всегда точна.

Непросто найти непосредственное и прямое применение теории хаоса в деловой среде, однако определенно стоит применять анализ деловой среды с использованием знаний о хаосе.

Предположения Теории хаоса). Условия

    Небольшие действия приводят к достаточно большим последствиям, создавая хаотичную атмосферу.

​Введение в теорию хаоса

Что такое теория хаоса?

Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия - процесс повторения элементов самоподобным образом).

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как "Парк юрского периода", и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Теория хаоса о беспорядке

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

- 177.38 Кб

1.Краткая биография…………………………… …………………………………...……3

2.Теория хаоса………………………………………… …………………………………..4

2.1.Основные сведения………………………………………………………… ……….6

2.2.Понятие хаоса………………………………………………………………… ……..6

2.3.Чувствительность к начальным условиям………………………………………....7

2.4 Топологическое смешивание…………………………………………………… ….7

2.5. Тонкости определения………………………………………………… ……….…..8

3. Аттракторы…………………………………………… ……………………………...…9

4. Странные аттракторы…………………………………………………… …………….10

5. Простые хаотические системы……………………………………………………….. 11

  • 6. Математическая теория……………………………………………………………. ….12
  • 7. Хронология…………………………………………… ………………………………..13
  • 8. Применение…………………………………………… ……………………………….15

9. Список литературы………………………………… …………………………….…....17

Краткая биография.

Эдвард Нортон Лоренц (23.05.1917-16.04.2008)- американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.

Эдвард Нортон Лоренц родился в г. Вест-Хартфорд (шт. Коннектикут, США) в 1917 г., учился математике в Гарварде и метеорологии в знаменитом Массачусетском технологическом институте (МИТ), где в 1943 г. получил степень доктора наук. Во время Второй мировой войны служил в качестве метеоролога в ВВС США, после войны в течение долгих лет работал на кафедре метеорологии МИТ, которую и возглавил в 1977 году.

С 1946 года работал в Массачусетском технологическом институте, профессор. Является членом Американской академии гуманитарных и естественных наук, Американского метеорологического общества и Национальной академии наук США. Иностранный член по Отделению океанологии, физики атмосферы и географии(геофизическая гидродинамика) АН СССР (с 1991- РАН) с 27 декабря 1988 г.

В 2004 награжден Большой золотой медалью имени М.В. Ломоносова

“Еще мальчиком я любил проделывать разные штуки с цифрами, кроме того, меня завораживали погодные явления”, - вспоминал Лоренц. Подобные наклонности позволили ученому сделать важнейшее открытие. После многолетних исследований он пришел к выводу: небольшие изменения, происходящие в атмосфере или аналогичных ей моделях, могут приводить к обширным и неожиданным последствиям.

В 1972 г. профессор опубликовал научную статью, заглавие которой стало нарицательным. Она называлась “О возможности предсказаний: может ли взмах крыльев бабочки в Бразилии вызвать торнадо в Техасе?”. Эта формулировка отлично иллюстрирует суть возникшей из работ Лоренца теории хаоса, которая сейчас играет важную роль едва ли не во всех областях современной науки - от математики до биологии.

В 1975 г. Лоренца избрали членом Академии наук США, его заслуги были отмечены многочисленными наградами. В 1983 г. он и его коллега Генри Стоммел вместе получили Премию Кроуфорда в размере $50 тыс. от Шведской королевской академии наук. Таким образом скандинавы отмечают достижения ученых, специальности которых не позволяют претендовать на Нобелевскую премию.

Эдвард Лоренц являлся иностранным членом Российской академии наук. Оставив руководство кафедрой в Массачусетском институте, он преподавал в различных вузах Европы и Америки. Эдвард также не оставлял свои научные изыскания, и, по словам семьи, занимался метеорологией буквально до последних дней жизни.

“Показав, что сложные системы со множеством причинно-следственных связей имеют порог предсказуемости, Эд забил последний гвоздь в гроб вселенной Декарта и произвел то, что многие называют третьей научной революцией XX в. после теории относительности и квантовой физики, - сказал Керри Эмануэль, профессор метеорологии в МИТ. - Он также был безупречным джентльменом, его интеллигентность, честность и скромность показали важный пример будущим поколениям ученых”.

Теория хаоса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной.

Примерами подобных систем являются атмосфера, турбулентн ые потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием, эффект Коновала - распределение частот выпадения положительных результатов, или принятия правильных решений.

Теория хаоса - область исследований, связывающая математику и физику.

Теория хаоса изучает порядок хаотической системы, которая выглядит случайной, беспорядочной. При этом теория хаоса помогает построить модель такой системы, не ставя задачу точного предсказания поведения хаотической системы в будущем.

Первые элементы теории хаоса появились еще в XIX веке, однако подлинное научное развитие эта теория получила во второй половине XX века, вместе с работами Эдварда Лоренца (Edward Lorenz) из Массачусетского технологического института и франко-американского математика Бенуа Б. Мандельброта (Benoit B. Mandelbrot).

Эдвард Лоренц в свое время (начало 60-х годов XX века, работа опубликована в 1963 году) рассматривал, в чем возникает трудность при прогнозировании погоды. До работы Лоренца в мире науки господствовало два мнения относительно возможности точного прогнозирования погоды на бесконечно длительный срок.

Первый подход сформулировал еще в 1776 году французский математик Пьер Симон Лаплас. Лаплас заявил, что "…если мы представим себе разум, который в данное мгновение постиг все связи между объектами во Вселенной, то он сможет установить соответствующее положение, движения и общие воздействия всех этих объектов в любое время в прошлом или в будущем". Этот его подход был очень похож на известные слова Архимеда: "Дайте мне точку опоры, и я переверну весь мир". Таким образом, Лаплас и его сторонники говорили, что для точного прогнозирования погоды необходимо только собрать больше информации обо всех частицах во Вселенной, их местоположении, скорости, массе, направлении движения, ускорении и т.п. Лаплас думал, чем больше человек будет знать, тем точнее будет его прогноз относительно будущего.

Второй подход к возможности прогнозирования погоды раньше всех наиболее четко сформулировал другой французский математик, Жюль Анри Пуанкаре. В 1903 году он сказал: "Если бы мы точно знали законы природы и положение Вселенной в начальный момент, мы могли бы точно предсказать положение той же Вселенной в последующий момент. Но даже если бы законы природы открыли нам все свои тайны, мы и тогда могли бы знать начальное положение только приближенно. Если бы это позволило нам предсказать последующее положение с тем же приближением, это было бы все, что нам требуется, и мы могли бы сказать, что явление было предсказано, что оно управляется законами. Но это не всегда так; может случиться, что малые различия в начальных условиях вызовут очень большие различия в конечном явлении. Малая ошибка в первых породит огромную ошибку в последнем. Предсказание становится невозможным, и мы имеем дело с явлением, которое развивается по воле случая".

В этих словах Пуанкаре мы находим постулат теории хаоса о зависимости от начальных условий. Последующее развитие науки, особенно квантовой механики, опровергло детерминизм Лапласа. В 1927 году немецкий физик Вернер Гейзенберг открыл и сформулировал принцип неопределенности. Этот принцип объясняет, почему некоторые случайные явления не подчиняются лапласовому детерминизму. Гейзенберг показал принцип неопределенности на примере радиоактивного распада ядра. Так, из-за очень малых размеров ядра невозможно знать все процессы, происходящие внутри него. Поэтому, сколько бы информации мы не собирали о ядре, точно предсказать, когда это ядро распадется невозможно. Какими же инструментами располагает теория хаоса. В первую очередь это аттракторы и фракталы.

Аттрактор (от англ. to attract - притягивать) - геометрическая структура, характеризующая поведение в фазовом пространстве по прошествии длительного времени. Здесь возникает необходимость определить понятие фазового пространства. Итак, фазовое пространство - это абстрактное пространство, координатами которого являются степени свободы системы. Например, у движения маятника две степени свободы. Это движение полностью определено начальной скоростью маятника и положением. Если движению маятника не оказывается сопротивления, то фазовым пространством будет замкнутая кривая. В реальности на Земле на движение маятника влияет сила трения. В этом случае фазовым пространством будет спираль. По простому, аттрактор - это то, к чему стремится прийти система, к чему она притягивается. - Самым простым типом аттрактора является точка. Такой аттрактор характерен для маятника при наличии трения. Независимо от начальной скорости и положения, такой маятник всегда придет в состояние покоя, т.е. в точку. - Следующим типом аттрактора является предельный цикл, который имеет вид замкнутой кривой линии. Примером такого аттрактора является маятник, на который не влияет сила трения. Еще одним примером предельного цикла является биение сердца. Частота биения может снижаться и возрастать, однако она всегда стремится к своему аттрактору, своей замкнутой кривой. - Третий тип аттрактора - тор. Несмотря на сложность поведения хаотических аттракторов, иногда называемых странными аттракторами, знание фазового пространства позволяет представить поведение системы в геометрической форме и соответственно предсказывать его. И хотя нахождение системы в конкретный момент времени в конкретной точке фазового пространства практически невозможно, область нахождения объекта и его стремление к аттрактору предсказуемы. Первым хаотическим аттрактором стал аттрактора Лоренца.

Аттрактор Лоренца рассчитан на основе всего трех степеней свободы - три обыкновенных дифференциальных уравнения, три константы и три начальных условия. Однако, несмотря на свою простоту, система Лоренца ведет себя псевдослучайным (хаотическим) образом. Смоделировав свою систему на компьютере, Лоренц выявил причину ее хаотического поведения - разницу в начальных условиях. Даже микроскопическое отклонение двух систем в самом начале в процессе эволюции приводило к экспоненциальному накоплению ошибок и соответственно их стохастическому расхождению.


Основные сведенья

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону и, в каком-то смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения.

Существует также такая область физики, как теория квантового хаоса, изучающая недетерминированные системы, подчиняющиеся законам квантовой механики.

Пионерами теории считаются французский физик и философ Ан ри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер, построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Основная статья: Динамический хаос

Пример чувствительности системы к первоначальным условиям, где x → 4 x (1 - x) и y → x + y, если x y <1 (иначе x + y - 1). Здесь четко видно, что ряды значений x и y через какое-то время заметно отклоняются друг от друга хотя в первоначальных состояниях отличия микроскопические

В бытовом контексте слово «хаос» означает «быть в состоянии беспорядка». В теории хаоса прилагательное хаотический опр еделено более точно. Хотя общепринятого универсального математического определения хаоса нет, обычно используемое определение говорит, что динамическая система, которая классифицируется как хаотическая, должна иметь следующие свойства:

  1. она должна быть чувствительна к начальным условиям
  2. она должна иметь свойство топологического смешивания
  3. её периодические орбиты должны быть всюду плотными.

Более точные математические условия возникновения хаоса выглядят так:

  1. Система должна иметь нелинейные характеристики, быть глобально устойчивой, но иметь хотя бы одну неустойчивую точку равновесия колебательного типа, при этом размерность системы должна быть не менее 1,5 (т.е. порядок дифференциального уравнения не менее 3-го).

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной. По теореме Пуанкаре-Бендиксона (Poincaré- Bendixson), непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трёхизмерений или неевклидова геометрия). Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.

Чувствительность к начальным условиям.

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне. Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание.

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения.

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему, которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности, и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π. Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным. Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы.

График аттрактора Лоренца для значений r = 28, σ = 10, b = 8/3

Аттра́ктор (англ. attract - привлекать, притягивать) - множество состояний (точнее - точек фазового пространства) динамической системы, к которому она стремится с течением времени. Наиболее простыми вариантами аттрактора являются притягивающая неподвижная точка (к примеру, в задаче о маятнике с трением) и периодическая траектория (пример - самовозбуждающиеся колебания в контуре с положительной обратной связью), однако бывают и значительно более сложные примеры. Некоторые динамические системы являются хаотическими всегда, но в большинстве случаев хаотическое поведение наблюдается только в тех случаях, когда параметры динамической системы принадлежат к некоторому специальному подпространству.

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитахаттракто ра. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составитьграфик его последующей орбиты. Из-за состояния топологической транзитивности, это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - простран ство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая. График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов.

Странные аттракторы.

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона

Описание работы

Эдвард Нортон Лоренц (23.05.1917-16.04.2008)- американский математик и метеоролог, один из основоположников Теории Хаоса, автор Эффекта бабочки, Аттрактора Лоренца.
Эдвард Нортон Лоренц родился в г. Вест-Хартфорд (шт. Коннектикут, США) в 1917 г., учился математике в Гарварде и метеорологии в знаменитом Массачусетском технологическом институте (МИТ), где в 1943 г. получил степень доктора наук. Во время Второй мировой войны служил в качестве метеоролога в ВВС США, после войны в течение долгих лет работал на кафедре метеорологии МИТ, которую и возглавил в 1977 году.

Содержание

1.Краткая биография………………………………………………………………...……3
2.Теория хаоса……………………………………………………………………………..4
2.1.Основные сведения………………………………………………………………….6
2.2.Понятие хаоса………………………………………………………………………..6
2.3.Чувствительность к начальным условиям………………………………………....7
2.4 Топологическое смешивание……………………………………………………….7
2.5. Тонкости определения………………………………………………………….…..8
3. Аттракторы…………………………………………………………………………...…9
4. Странные аттракторы………………………………………………………………….10
5. Простые хаотические системы………………………………………………………..11
6. Математическая теория…………………………………………………………….….12
7. Хронология……………………………………………………………………………..13
8. Применение…………………………………………………………………………….15
9. Список литературы……………………………………………………………….…....17

  • Разделы сайта