Правила вычисления производных. Производная функции

Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx :

Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f (x ) = x 2 + (2x + 3) · e x · sin x . Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.

Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.

Производные элементарных функций

Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.

Итак, производные элементарных функций:

Название Функция Производная
Константа f (x ) = C , C R 0 (да-да, ноль!)
Степень с рациональным показателем f (x ) = x n n · x n − 1
Синус f (x ) = sin x cos x
Косинус f (x ) = cos x − sin x (минус синус)
Тангенс f (x ) = tg x 1/cos 2 x
Котангенс f (x ) = ctg x − 1/sin 2 x
Натуральный логарифм f (x ) = ln x 1/x
Произвольный логарифм f (x ) = log a x 1/(x · ln a )
Показательная функция f (x ) = e x e x (ничего не изменилось)

Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:

(C · f )’ = C · f ’.

В общем, константы можно выносить за знак производной. Например:

(2x 3)’ = 2 · (x 3)’ = 2 · 3x 2 = 6x 2 .

Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.

Производная суммы и разности

Пусть даны функции f (x ) и g (x ), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:

  1. (f + g )’ = f ’ + g
  2. (f g )’ = f ’ − g

Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h )’ = f ’ + g ’ + h ’.

Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f g можно переписать как сумму f + (−1) · g , и тогда останется лишь одна формула — производная суммы.

f (x ) = x 2 + sin x; g (x ) = x 4 + 2x 2 − 3.

Функция f (x ) — это сумма двух элементарных функций, поэтому:

f ’(x ) = (x 2 + sin x )’ = (x 2)’ + (sin x )’ = 2x + cos x;

Аналогично рассуждаем для функции g (x ). Только там уже три слагаемых (с точки зрения алгебры):

g ’(x ) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · (x 2 + 1).

Ответ:
f ’(x ) = 2x + cos x;
g ’(x ) = 4x · (x 2 + 1).

Производная произведения

Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike ">равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:

(f · g ) ’ = f ’ · g + f · g

Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.

Задача. Найти производные функций: f (x ) = x 3 · cos x; g (x ) = (x 2 + 7x − 7) · e x .

Функция f (x ) представляет собой произведение двух элементарных функций, поэтому все просто:

f ’(x ) = (x 3 · cos x )’ = (x 3)’ · cos x + x 3 · (cos x )’ = 3x 2 · cos x + x 3 · (− sin x ) = x 2 · (3cos x x · sin x )

У функции g (x ) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g (x ) представляет собой многочлен, и его производная — это производная суммы. Имеем:

g ’(x ) = ((x 2 + 7x − 7) · e x )’ = (x 2 + 7x − 7)’ · e x + (x 2 + 7x − 7) · (e x )’ = (2x + 7) · e x + (x 2 + 7x − 7) · e x = e x · (2x + 7 + x 2 + 7x −7) = (x 2 + 9x ) · e x = x (x + 9) · e x .

Ответ:
f ’(x ) = x 2 · (3cos x x · sin x );
g ’(x ) = x (x + 9) · e x .

Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.

Если есть две функции f (x ) и g (x ), причем g (x ) ≠ 0 на интересующем нас множестве, можно определить новую функцию h (x ) = f (x )/g (x ). Для такой функции тоже можно найти производную:

Неслабо, да? Откуда взялся минус? Почему g 2 ? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.

Задача. Найти производные функций:

В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:


По традиции, разложим числитель на множители — это значительно упростит ответ:

Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f (x ) = sin x и заменить переменную x , скажем, на x 2 + ln x . Получится f (x ) = sin (x 2 + ln x ) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.

Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:

f ’(x ) = f ’(t ) · t ’, если x заменяется на t (x ).

Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.

Задача. Найти производные функций: f (x ) = e 2x + 3 ; g (x ) = sin (x 2 + ln x )

Заметим, что если в функции f (x ) вместо выражения 2x + 3 будет просто x , то получится элементарная функция f (x ) = e x . Поэтому делаем замену: пусть 2x + 3 = t , f (x ) = f (t ) = e t . Ищем производную сложной функции по формуле:

f ’(x ) = f ’(t ) · t ’ = (e t )’ · t ’ = e t · t

А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:

f ’(x ) = e t · t ’ = e 2x + 3 · (2x + 3)’ = e 2x + 3 · 2 = 2 · e 2x + 3

Теперь разберемся с функцией g (x ). Очевидно, надо заменить x 2 + ln x = t . Имеем:

g ’(x ) = g ’(t ) · t ’ = (sin t )’ · t ’ = cos t · t

Обратная замена: t = x 2 + ln x . Тогда:

g ’(x ) = cos (x 2 + ln x ) · (x 2 + ln x )’ = cos (x 2 + ln x ) · (2x + 1/x ).

Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.

Ответ:
f ’(x ) = 2 · e 2x + 3 ;
g ’(x ) = (2x + 1/x ) · cos (x 2 + ln x ).

Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.

Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:

(x n )’ = n · x n − 1

Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x 0,5 . А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.

Задача. Найти производную функции:

Для начала перепишем корень в виде степени с рациональным показателем:

f (x ) = (x 2 + 8x − 7) 0,5 .

Теперь делаем замену: пусть x 2 + 8x − 7 = t . Находим производную по формуле:

f ’(x ) = f ’(t ) · t ’ = (t 0,5)’ · t ’ = 0,5 · t −0,5 · t ’.

Делаем обратную замену: t = x 2 + 8x − 7. Имеем:

f ’(x ) = 0,5 · (x 2 + 8x − 7) −0,5 · (x 2 + 8x − 7)’ = 0,5 · (2x + 8) · (x 2 + 8x − 7) −0,5 .

Наконец, возвращаемся к корням:

В этом уроке мы продолжаем изучать производные функций и переходим к более сложной теме, а именно, к производным произведения и частного. Если вы смотрели предыдущий урок, то наверняка поняли, что мы рассматривали лишь самые простые конструкции, а именно, производную степенной функции, суммы и разности. В частности, мы узнали, что производная суммы равна их сумме, а производная разности равна, соответственно, их разности. К сожалению, в случае с производными частного и произведения формулы будут гораздо сложнее. Начнем мы именно с формулы производной произведения функций.

Производные тригонометрических функций

Для начала позволю себе небольшое лирическое отступление. Дело в том, что помимо стандартной степенной функции — $y={{x}^{n}}$, в этом уроке будут встречаться и другие функции, а именно, $y=\sin x$, а также $y=\cos x$ и прочая тригонометрия — $y=tgx$ и, разумеется, $y=ctgx$.

Если производную степенной функции мы все прекрасно знаем, а именно $\left({{x}^{n}} \right)=n\cdot {{x}^{n-1}}$, то, что касается тригонометрических функций, нужно упомянуть отдельно. Давайте запишем:

\[\begin{align}& {{\left(\sinx \right)}^{\prime }}=\cosx \\& {{\left(\cos x \right)}^{\prime }}=-\sin x \\& {{\left(tgx \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x} \\& {{\left(ctgx \right)}^{\prime }}=\frac{1}{{{\cos }^{2}}x} \\\end{align}\]

Но эти формулы вы прекрасно знаете, давайте пойдем дальше.

Что такое производная произведения?

Для начала самое главное: если функция представляет собой произведение двух других функций, например, $f\cdot g$, то производная этой конструкции будет равна следующему выражению:

Как видите, эта формула значительно отличается и является более сложной, нежели те формулы, которые мы рассматривали ранее. Например, производная суммы считается элементарно —${{\left(f+g \right)}^{\prime }}={f}"+{g}"$, либо производная разности, которая тоже элементарно считается ― ${{\left(f-g \right)}^{\prime }}={f}"-{g}"$.

Давайте попробуем применить первую формулу для вычисления производных двух функций, которые нам даны в задаче. Начнем с первого примера:

Очевидно, что в качестве произведения, точнее, в качестве множителя, выступает следующая конструкция: ${{x}^{3}}$, мы можем рассматривать в качестве $f$, а $\left(x-5 \right)$ мы можем рассматривать в качестве $g$. Тогда их произведение как раз и будет произведением двух функций. Решаем:

\[\begin{align}& {{\left({{x}^{3}}\cdot \left(x-5 \right) \right)}^{\prime }}={{\left({{x}^{3}} \right)}^{\prime }}\cdot \left(x-5 \right)+{{x}^{3}}\cdot {{\left(x-5 \right)}^{\prime }}= \\& =3{{x}^{2}}\cdot \left(x-5 \right)+{{x}^{3}}\cdot 1 \\\end{align}\].

Теперь давайте внимательно посмотрим на каждое из наших слагаемых. Мы видим, что и в первом, и во втором слагаемом присутствует степень $x$: в первом случае это ${{x}^{2}}$, а во втором — ${{x}^{3}}$. Давайте вынесем наименьшую степень за скобки, в скобке останется:

\[\begin{align}& 3{{x}^{2}}\cdot \left(x-5 \right)+{{x}^{3}}\cdot 1={{x}^{2}}\left(3\cdot 1\left(x-5 \right)+x \right)= \\& ={{x}^{2}}\left(3x-15+x \right)={{x}^{2}}(4x-15) \\\end{align}\]

Все, мы нашли ответ.

Возвращаемся к нашим задачам и попробуем решить:

Итак, переписываем:

Опять же замечаем, что речь идет о произведении произведения двух функций: $x$, которую можно обозначить за $f$, и $\left(\sqrt{x}-1 \right)$, которую можно обозначить за $g$.

Таким образом, перед нами вновь произведение двух функций. Для нахождения производной функции $f\left(x \right)$ вновь воспользуемся нашей формулой. Получим:

\[\begin{align}& {f}"=\left(x \right)"\cdot \left(\sqrt{x}-1 \right)+x\cdot {{\left(\sqrt{x}-1 \right)}^{\prime }}=1\cdot \left(\sqrt{x}-1 \right)+x\frac{1}{3\sqrt{x}}= \\& =\sqrt{x}-1+\sqrt{x}\cdot \frac{1}{3}=\frac{4}{3}\sqrt{x}-1 \\\end{align}\]

Ответ найден.

Зачем раскладывать производные на множители?

Только что мы использовали несколько очень важных математических фактов, которые сами по себе не имеют отношения к производным, однако без их знания все дальнейшее изучение этой темы просто не имеет смысла.

Во-первых, решая самую первую задачу и, уже избавившись от всех знаков производных, мы зачем-то начали раскладывать это выражение на множители.

Во-вторых, решая следующую задачу, мы несколько раз переходили от корня к степени с рациональным показателем и обратно, при этом используя формулу 8-9-го класса, которую стоило бы повторить отдельно.

По поводу разложения на множители ― зачем вообще нужны все эти дополнительные усилия и преобразования? На самом деле, если в задаче просто сказано «найти производную функции», то эти дополнительные действия не требуются. Однако в реальных задачах, которые ждут вас на всевозможных экзаменах и зачетах, просто найти производную зачастую недостаточно. Дело в том, что производная является лишь инструментом, с помощью которой можно узнать, например, возрастание или убывание функции, а для этого требуется решать уравнение, раскладывать его на множители. И вот здесь этот прием будет очень уместен. Да и вообще, с функцией, разложенной на множители, гораздо удобней и приятней работать в дальнейшем, если требуются какие-то преобразования. Поэтому правило № 1: если производную можно разложить на множители, именно так и стоит поступать. И сразу правило № 2 (по сути, это материал 8-9-го класса): если в задаче встречается корень n -ной степени, причем, корень явно больше двух, то этот корень можно заменить обычной степенью с рациональным показателем, причем в показателе появится дробь, где n ― та самая степень ― окажется в знаменателе этой дроби.

Разумеется, если под корнем присутствует какая-то степень (в нашем случае это степень k ), то она никуда не девается, а просто оказывается в числителе этой самой степени.

А теперь, когда вы все это поняли, давайте вернемся к производным произведения и посчитаем еще несколько уравнений.

Но прежде чем переходить непосредственно к вычислениям, хотел бы напомнить такие закономерности:

\[\begin{align}& {{\left(\sin x \right)}^{\prime }}=\cos x \\& {{\left(\cos x \right)}^{\prime }}=-\sin x \\& \left(tgx \right)"=\frac{1}{{{\cos }^{2}}x} \\& {{\left(ctgx \right)}^{\prime }}=-\frac{1}{{{\sin }^{2}}x} \\\end{align}\]

Считаем первый пример:

У нас опять произведение двух функций: первая ― $f$, вторая ― $g$. Напомню формулу:

\[{{\left(f\cdot g \right)}^{\prime }}={f}"\cdot g+f\cdot {g}"\]

Давайте решим:

\[\begin{align}& {y}"={{\left({{x}^{4}} \right)}^{\prime }}\cdot \sin x+{{x}^{4}}\cdot {{\left(\sin x \right)}^{\prime }}= \\& =3{{x}^{3}}\cdot \sin x+{{x}^{4}}\cdot \cos x={{x}^{3}}\left(3\sin x+x\cdot \cos x \right) \\\end{align}\]

Переходим ко второй функции:

Опять же, $\left(3x-2 \right)$ ― это функция $f$, $\cos x$ ― это функция $g$. Итого производная произведения двух функций будет равна:

\[\begin{align}& {y}"={{\left(3x-2 \right)}^{\prime }}\cdot \cos x+\left(3x-2 \right)\cdot {{\left(\cos x \right)}^{\prime }}= \\& =3\cdot \cos x+\left(3x-2 \right)\cdot \left(-\sin x \right)=3\cos x-\left(3x-2 \right)\cdot \sin x \\\end{align}\]

\[{y}"={{\left({{x}^{2}}\cdot \cos x \right)}^{\prime }}+{{\left(4x\sin x \right)}^{\prime }}\]

Выпишем по отдельности:

\[\begin{align}& {{\left({{x}^{2}}\cdot \cos x \right)}^{\prime }}=\left({{x}^{2}} \right)"\cos x+{{x}^{2}}\cdot {{\left(\cos x \right)}^{\prime }}= \\& =2x\cdot \cos x+{{x}^{2}}\cdot \left(-\sin x \right)=2x\cdot \cos x-{{x}^{2}}\cdot \sin x \\\end{align}\]

На множители мы это выражение не раскладываем, потому что это еще не окончательный ответ. Сейчас нам предстоит решить вторую часть. Выписываем ее:

\[\begin{align}& {{\left(4x\cdot \sin x \right)}^{\prime }}={{\left(4x \right)}^{\prime }}\cdot \sin x+4x\cdot {{\left(\sin x \right)}^{\prime }}= \\& =4\cdot \sin x+4x\cdot \cos x \\\end{align}\]

А теперь возвращаемся к нашей изначальной задаче и собираем все в единую конструкцию:

\[\begin{align}& {y}"=2x\cdot \cos x-{{x}^{2}}\cdot \sin x+4\sin x+4x\cos x=6x\cdot \cos x= \\& =6x\cdot \cos x-{{x}^{2}}\cdot \sin x+4\sin x \\\end{align}\]

Все, это окончательный ответ.

Переходим к последнему примеру ― он будет самым сложным и самым объемным по вычислениям. Итак, пример:

\[{y}"={{\left({{x}^{2}}\cdot tgx \right)}^{\prime }}-{{\left(2xctgx \right)}^{\prime }}\]

Считаем каждую часть отдельно:

\[\begin{align}& {{\left({{x}^{2}}\cdot tgx \right)}^{\prime }}={{\left({{x}^{2}} \right)}^{\prime }}\cdot tgx+{{x}^{2}}\cdot {{\left(tgx \right)}^{\prime }}= \\& =2x\cdot tgx+{{x}^{2}}\cdot \frac{1}{{{\cos }^{2}}x} \\\end{align}\]

\[\begin{align}& {{\left(2x\cdot ctgx \right)}^{\prime }}={{\left(2x \right)}^{\prime }}\cdot ctgx+2x\cdot {{\left(ctgx \right)}^{\prime }}= \\& =2\cdot ctgx+2x\left(-\frac{1}{{{\sin }^{2}}x} \right)=2\cdot ctgx-\frac{2x}{{{\sin }^{2}}x} \\\end{align}\]

Возвращаясь к исходной функции, посчитаем ее производную в целом:

\[\begin{align}& {y}"=2x\cdot tgx+\frac{{{x}^{2}}}{{{\cos }^{2}}x}-\left(2ctgx-\frac{2x}{{{\sin }^{2}}x} \right)= \\& =2x\cdot tgx+\frac{{{x}^{2}}}{{{\cos }^{2}}x}-2ctgx+\frac{2x}{{{\sin }^{2}}x} \\\end{align}\]

Вот, собственно, и все, что я хотел рассказать по производным произведения. Как видите, основная проблема формулы состоит не в том, чтобы ее заучить, а в том, что получается довольно большой объем вычислений. Но это нормально, потому что сейчас мы переходим к производной частного, где нам придется очень сильно потрудиться.

Что представляет собой производная частного?

Итак, формула производной частного. Пожалуй, это самая сложная формула в школьном курсе производных. Допустим, у нас есть функция вида $\frac{f}{g}$, где $f$ и $g$ ― также функции, с которых тоже можно снять штрих. Тогда она будет считаться по следующей формуле:

Числитель чем-то напоминает нам формулу производной произведения, однако между слагаемыми стоит знак «минус» и еще в знаменателе добавился квадрат исходного знаменателя. Давайте посмотрим, как это работает на практике:

Попытаемся решить:

\[{f}"={{\left(\frac{{{x}^{2}}-1}{x+2} \right)}^{\prime }}=\frac{{{\left({{x}^{2}}-1 \right)}^{\prime }}\cdot \left(x+2 \right)-\left({{x}^{2}}-1 \right)\cdot {{\left(x+2 \right)}^{\prime }}}{{{\left(x+2 \right)}^{2}}}\]

Предлагаю выписать каждую часть отдельно и записать:

\[\begin{align}& {{\left({{x}^{2}}-1 \right)}^{\prime }}={{\left({{x}^{2}} \right)}^{\prime }}-{1}"=2x \\& {{\left(x+2 \right)}^{\prime }}={x}"+{2}"=1 \\\end{align}\]

Переписываем наше выражение:

\[\begin{align}& {f}"=\frac{2x\cdot \left(x+2 \right)-\left({{x}^{2}}-1 \right)\cdot 1}{{{\left(x+2 \right)}^{2}}}= \\& =\frac{2{{x}^{2}}+4x-{{x}^{2}}+1}{{{\left(x+2 \right)}^{2}}}=\frac{{{x}^{2}}+4x+1}{{{\left(x+2 \right)}^{2}}} \\\end{align}\]

Мы нашли ответ. Переходим ко второй функции:

Судя по тому, что в ее числителе стоит просто единица, то здесь вычисления будут чуть проще. Итак, запишем:

\[{y}"={{\left(\frac{1}{{{x}^{2}}+4} \right)}^{\prime }}=\frac{{1}"\cdot \left({{x}^{2}}+4 \right)-1\cdot {{\left({{x}^{2}}+4 \right)}^{\prime }}}{{{\left({{x}^{2}}+4 \right)}^{2}}}\]

Посчитаем каждую часть примера отдельно:

\[\begin{align}& {1}"=0 \\& {{\left({{x}^{2}}+4 \right)}^{\prime }}={{\left({{x}^{2}} \right)}^{\prime }}+{4}"=2x \\\end{align}\]

Переписываем наше выражение:

\[{y}"=\frac{0\cdot \left({{x}^{2}}+4 \right)-1\cdot 2x}{{{\left({{x}^{2}}+4 \right)}^{2}}}=-\frac{2x}{{{\left({{x}^{2}}+4 \right)}^{2}}}\]

Мы нашли ответ. Как и предполагалось, объем вычисления оказался существенно меньше, чем для первой функции.

В чем разница между обозначениями?

У внимательных учеников наверняка уже возник вопрос: почему в одних случаях мы обозначаем функцию как $f\left(x \right)$, а в других случаях пишем просто $y$? На самом деле, с точки зрения математики нет абсолютно никакой разницы ― вы вправе использовать как первое обозначение, так и второе, при этом никаких штрафных санкций на экзаменах и зачетах не последует. Для тех, кому все-таки интересно, поясню, почему авторы учебников и задач в одних случаях пишут $f\left(x \right)$, а в других (гораздо более частых) ― просто $y$. Дело в том, что записывая функцию в виде\, мы неявно намекаем тому, кто будет читать наши выкладки, что речь идет именно об алгебраической интерпретации функциональной зависимости. Т. е., есть некая переменная $x$, мы рассматриваем зависимость от этой переменной и обозначаем ее $f\left(x \right)$. При этом, увидев вот такое обозначение, тот, кто будет читать ваши выкладки, например, проверяющий, будет подсознательно ожидать, что в дальнейшем его ждут лишь алгебраические преобразования ― никаких графиков и никакой геометрии.

С другой стороны, используя обозначения вида\, т. е., обозначая переменную одной единственной буквой, мы сразу даем понять, что в дальнейшем нас интересует именно геометрическая интерпретация функции, т. е., нас интересует, в первую очередь, ее график. Соответственно, столкнувшись с записью вида\, читатель вправе ожидать графических выкладок, т. е., графиков, построений и т. д., но, ни в коем случае, не аналитических преобразований.

Еще хотел бы обратить ваше внимание на одну особенность оформления задач, которые мы сегодня рассматриваем. Многие ученики считают, что я привожу слишком подробные выкладки, и многие из них можно было бы пропустить или просто решить в уме. Однако именно такая подробная запись позволит вам избавится от обидных ошибок и значительно увеличит процент правильно решенных задач, например, в случае самостоятельной подготовки к контрольным или экзаменам. Поэтому если вы еще неуверенны в своих силах, если вы только начинаете изучать данную тему, не спешите ― подробно расписывайте каждый шаг, выписывайте каждый множитель, каждый штрих, и очень скоро вы научитесь решать такие примеры лучше, чем многие школьные учителя. Надеюсь, это понятно. Давайте посчитаем еще несколько примеров.

Несколько интересных задач

На этот раз, как мы видим, в составе вычисляемых производных присутствует тригонометрия. Поэтому напомню следующее:

\[\begin{align}& (sinx{)}"=\cos x \\& {{\left(\cos x \right)}^{\prime }}=-\sin x \\\end{align}\]

Конечно, нам не обойтись и без производной частного, а именно:

\[{{\left(\frac{f}{g} \right)}^{\prime }}=\frac{{f}"\cdot g-f\cdot {g}"}{{{g}^{2}}}\]

Считаем первую функцию:

\[\begin{align}& {f}"={{\left(\frac{\sin x}{x} \right)}^{\prime }}=\frac{{{\left(\sin x \right)}^{\prime }}\cdot x-\sin x\cdot \left({{x}"} \right)}{{{x}^{2}}}= \\& =\frac{x\cdot \cos x-1\cdot \sin x}{{{x}^{2}}}=\frac{x\cos x-\sin x}{{{x}^{2}}} \\\end{align}\]

Вот мы и нашли решение этого выражения.

Переходим ко второму примеру:

Очевидно, что ее производная будет более сложной уже хотя бы потому, что и в числителе, и в знаменателе данной функции присутствует тригонометрия. Решаем:

\[{y}"={{\left(\frac{x\sin x}{\cos x} \right)}^{\prime }}=\frac{{{\left(x\sin x \right)}^{\prime }}\cdot \cos x-x\sin x\cdot {{\left(\cos x \right)}^{\prime }}}{{{\left(\cos x \right)}^{2}}}\]

Заметим, что у нас возникает производная произведения. В этом случае она будет равна:

\[\begin{align}& {{\left(x\cdot \sin x \right)}^{\prime }}={x}"\cdot \sin x+x{{\left(\sin x \right)}^{\prime }}= \\& =\sin x+x\cos x \\\end{align}\]

Возвращаемся к нашим вычислениям. Записываем:

\[\begin{align}& {y}"=\frac{\left(\sin x+x\cos x \right)\cos x-x\cdot \sin x\cdot \left(-\sin x \right)}{{{\cos }^{2}}x}= \\& =\frac{\sin x\cdot \cos x+x{{\cos }^{2}}x+x{{\sin }^{2}}x}{{{\cos }^{2}}x}= \\& =\frac{\sin x\cdot \cos x+x\left({{\sin }^{2}}x+{{\cos }^{2}}x \right)}{{{\cos }^{2}}x}=\frac{\sin x\cdot \cos x+x}{{{\cos }^{2}}x} \\\end{align}\]

Вот и все! Мы посчитали.

Как свести производную частного к простой формуле производной произведения?

И вот тут хотелось бы сделать одно очень важное замечание, касающееся именно тригонометрических функций. Дело в том, что наша исходная конструкция содержит в себе выражение вида $\frac{\sin x}{\cos x}$, которую легко можно заменить просто $tgx$. Таким образом, мы сведем производную частного к более простой формуле производной произведения. Вот давайте посчитаем этот пример еще раз и сравним результаты.

Итак, теперь нам нужно учесть следующее:

\[\frac{\sin x}{\cos x}=tgx\]

Перепишем нашу исходную функцию $y=\frac{x\sin x}{\cos x}$ с учетом этого факта. Получим:

Давайте посчитаем:

\[\begin{align}& {y}"={{\left(x\cdot tgx \right)}^{\prime }}{x}"\cdot tgx+x{{\left(tgx \right)}^{\prime }}=tgx+x\frac{1}{{{\cos }^{2}}x}= \\& =\frac{\sin x}{\cos x}+\frac{x}{{{\cos }^{2}}x}=\frac{\sin x\cdot \cos x+x}{{{\cos }^{2}}x} \\\end{align}\]

Теперь, если мы сравним полученный результат с тем, что мы получили ранее, при вычислении по другому пути, то мы убедимся, что получили одно и то же выражение. Таким образом, каким бы путем мы не шли при вычислении производной, если все посчитано верно, то ответ будет одним и тем же.

Важные нюансы при решении задач

В заключении хотел бы рассказать вам еще одну тонкость, связанную с вычислением производной частного. То, что я вам сейчас расскажу, не было в изначальном сценарии видеоурока. Однако за пару часов до съемок я занимался с одним из своих учеников, и мы как раз разбирали тему производных частного. И, как выяснилось, этот момент многие ученики не понимают. Итак, допустим, нам нужно посчитать снять штрих следующей функции:

В принципе, ничего сверхъестественного на первый взгляд в ней нет. Однако в процессе вычисления мы можем допустить много глупых и обидных ошибок, которые я бы хотел сейчас разобрать.

Итак, считаем эту производную. Прежде всего, заметим, что у нас присутствует слагаемое $3{{x}^{2}}$, поэтому уместно вспомнить следующую формулу:

\[{{\left({{x}^{n}} \right)}^{\prime }}=n\cdot {{x}^{n-1}}\]

Кроме того, у нас присутствует слагаемое $\frac{48}{x}$ ― с ним мы будем разбираться через производную частного, а именно:

\[{{\left(\frac{f}{g} \right)}^{\prime }}=\frac{{f}"\cdot g-f\cdot {g}"}{{{g}^{2}}}\]

Итак, решаем:

\[{y}"={{\left(\frac{48}{x} \right)}^{\prime }}+{{\left(3{{x}^{2}} \right)}^{\prime }}+10{0}"\]

С первым слагаемым никаких проблем, смотрите:

\[{{\left(3{{x}^{2}} \right)}^{\prime }}=3\cdot {{\left({{x}^{2}} \right)}^{\prime }}=3k.2x=6x\]

А вот с первым слагаемым, $\frac{48}{x}$, нужно поработать отдельно. Дело в том, что многие ученики путают ситуацию, когда нужно найти ${{\left(\frac{x}{48} \right)}^{\prime }}$и когда нужно найти ${{\left(\frac{48}{x} \right)}^{\prime }}$. Т. е., они путаются, когда константа стоит в знаменателе, и когда константа стоит в числителе, соответственно, когда переменная стоит в числителе, либо в знаменателе.

Для начала проработаем первый вариант:

\[{{\left(\frac{x}{48} \right)}^{\prime }}={{\left(\frac{1}{48}\cdot x \right)}^{\prime }}=\frac{1}{48}\cdot {x}"=\frac{1}{48}\cdot 1=\frac{1}{48}\]

С другой стороны, если мы попробуем аналогично поступить и со второй дробью, то получим следующее:

\[\begin{align}& {{\left(\frac{48}{x} \right)}^{\prime }}={{\left(48\cdot \frac{1}{x} \right)}^{\prime }}=48\cdot {{\left(\frac{1}{x} \right)}^{\prime }}= \\& =48\cdot \frac{{1}"\cdot x-1\cdot {x}"}{{{x}^{2}}}=48\cdot \frac{-1}{{{x}^{2}}}=-\frac{48}{{{x}^{2}}} \\\end{align}\]

Однако тот же самый пример можно было посчитать и иначе: на этапе, где мы переходили к производной частного, можно рассмотреть $\frac{1}{x}$ как степень с отрицательным показателем, т. е., мы получим следующее:

\[\begin{align}& 48\cdot {{\left(\frac{1}{x} \right)}^{\prime }}=48\cdot {{\left({{x}^{-1}} \right)}^{\prime }}=48\cdot \left(-1 \right)\cdot {{x}^{-2}}= \\& =-48\cdot \frac{1}{{{x}^{2}}}=-\frac{48}{{{x}^{2}}} \\\end{align}\]

И так, и так мы получили один и тот же ответ.

Таким образом, мы еще раз убедились в двух важных фактах. Во-первых, одну и ту же производную можно посчитать совершенно различными способами. Например, ${{\left(\frac{48}{x} \right)}^{\prime }}$ можно рассматривать и как производную частного, и как производную степенной функции. При этом если все вычисления выполнены верно, то ответ всегда получится одним и тем же. Во-вторых, при вычислении производных, содержащих и переменную, и константу, принципиально важным является то, где находится переменная ― в числителе или в знаменателе. В первом случае, когда переменная находится в числителе, мы получаем простую линейную функцию, которая элементарно считается. А в случае, если переменная стоит в знаменателе, то мы получаем более сложное выражение с сопутствующими выкладками, приведенными ранее.

На этом урок можно считать законченным, поэтому если вам что-то непонятно по производным частного или произведения, да и вообще, если у вас есть любые вопросы по этой теме, не стесняйтесь ― заходите на мой сайт, пишите, звоните, и я обязательно постараюсь вам помочь.

Сами по себе производные ― тема отнюдь не сложная, но очень объемная, и то, что мы сейчас изучаем, будет использоваться в будущем при решении более сложных задач. Именно поэтому все недопонимания, связанные с вычислениями производных частного или произведения, лучше выявить немедленно, прямо сейчас. Не когда они представляют собой огромный снежный ком недопонимания, а когда представляют собой маленький теннисный шарик, с которым легко разобраться.

Пусть функции и определены в некоторой окрестности точки и имеют в точке производные. Тогда их произведение имеет в точке производную, которая определяется по формуле:
(1) .

Доказательство

Введем обозначения:
;
.
Здесь и являются функциями от переменных и . Но для простоты записи мы будем опускать обозначения их аргументов.

Далее замечаем, что
;
.
По условию функции и имеют производные в точке , которые являются следующими пределами:
;
.
Из существования производных следует, что функции и непрерывны в точке . Поэтому
;
.

Рассмотрим функцию y от переменной x , которая является произведением функций и :
.
Рассмотрим приращение этой функции в точке :



.
Теперь находим производную:


.

Итак,
.
Правило доказано.

Вместо переменной можно использовать любую другую переменную. Обозначим ее как x . Тогда если существуют производные и , то производная произведения двух функций определяется по формуле:
.
Или в более короткой записи
(1) .

Следствие

Пусть являются функциями от независимой переменной x . Тогда
;
;
и т. д. ...

Докажем первую формулу. Вначале применим формулу производной произведения (1) для функций и , а затем - для функций и :

.

Аналогично доказываются другие подобные формулы.

Примеры

Пример 1

Найдите производную
.

Применяем правило дифференцирования произведения двух функций
(1) .
.

Из таблицы производных находим:
;
.
Тогда
.

Окончательно имеем:
.

Пример 2

Найти производную функции от переменной x
.

Применяем формулу производной произведения двух функций:
(1) .
.

Применяем формулу производной суммы и разности функций :
.
.

Применяем правила дифференцирования постоянных :
;
.
;
.

Что такое производная функция - это основное математическое понятие, находится на одном уровне с интегралами, при анализе. Данная функция в определенной точке дает характеристику скорости изменений функции в данной точке.
Такие понятия как дифференцирование и интегрирование, первое расшифровывается как действие поиска производной, второе наоборот, восстанавливает функцию отталкиваясь от данной производной.
Вычислениям производной отводится важная часть в дифференциальных расчетах.
Для наглядного примера, изобразим производную на координатной плоскости.

в функции у=f(х) фиксируем точки М в которой (х0; f(X0)) и N f (x0+?x) к каждой абсциссе есть приращение в виде?x. Приращением называется процесс когда изменяется абсцисса, тогда меняется и ордината. Обозначается как?у.
Найдем тангенс угла в треугольнике MPN используя для этого точки М и N.

tg? = NP/MP = ?у/?x.

При?x идущем к 0. Пересекающая МN все ближе к касательной МТ и угол? будет?. Следовательно, tg ? максимальное значение для tg ?.

tg ? = lim от?x-0 tg ? = lim от?x-0 ?у/?x

Таблица производных

Если проговаривать формулировку каждой формулы производных . Таблица будет проще запоминаться.
1) Производная от постоянного значения равняется 0.
2) Х со штрихом равняется единице.
3) Если есть постоянный множитель, просто выносим ео за производную.
4) Чтобы найти производную степень, нужно показатель данной степени умножить на степень с таким же основанием, у которого показатель на 1 меньше.
5) Поиск корня равен одному, деленному 2 этих корня.
6) Производная одного, деленного на Х равняется одному разделенному на Х возведенный в квадрат, со знаком минус.
7) П синус равняется косинусу
8) П косинус равняется синусу со знаком минус.
9) П тангенс равняется одному, деленному на косинус в квадрате.
10) П котангенс равняется одному со знаком минус, деленная на синус в квадрате.

В дифференцировании также существуют правила, которые тоже проще выучить проговаривая их в слух.

1) Очень просто, п. слагаемых равняется их сумме.
2) Производная в умножении равняется умножению первого значения на второе, прибавляя к себе умножение второго значения на первое.
3) Производная в делении равняется умножению первого значения на второе, отнимая от себя умножение второго значения на первое. Дробь деления на второе значение в квадрате.
4) Формулировка является частным случаем третьей формулы.

  • Разделы сайта