Геометрический смысл дифференциала функции нескольких переменных. Полное приращение и полный дифференциал

Для функции одной переменной y = f (x ) в точкеx 0 геометрический смысл дифференциала означает приращение ординаты касательной, проведенной к графику функции в точке с абсциссойx 0 при переходе к точкеx 0 + x . А дифференциал функции двух переменных в этом плане является приращениемаппликаты касательнойплоскости , проведенной к поверхности, заданной уравнениемz = f (x , y ) , в точкеM 0 (x 0 , y 0 ) при переходе к точкеM (x 0 + x , y 0 + y ). Дадим определение касательной плоскости к некоторой поверхности:

Df . Плоскость, проходящая через точкуР 0 поверхностиS , называетсякасательной плоскостью в данной точке, если угол между этой плоскостью и секущей, проходящей через две точкиР 0 иР (любая точка поверхностиS ) , стремится к нулю, когда точкаР стремится по этой поверхности к точкеР 0 .

Пусть поверхность S задана уравнениемz = f (x , y ). Тогда можно показать, что эта поверхность имеет в точкеP 0 (x 0 , y 0 , z 0 ) касательную плоскость тогда и только тогда, если функцияz = f (x , y ) дифференцируема в этой точке. В этом случае касательная плоскость задается уравнением:

z z 0 = +
(6).

§5. Производная по направлению, градиент функции.

Частные производные функции y = f (x 1 , x 2 .. x n ) по переменнымx 1 , x 2 . . . x n выражают скорость изменения функции по направлению координатных осей. Например,есть скорость изменения функции пох 1 – то есть предполагается, что точка, принадлежащая области определения функции, перемещается лишь параллельно осиОХ 1 , а все остальные координаты остаются неизменными. Однако, можно предположить, что функция может изменяться и по какому-нибудь другому направлению, не совпадающему с направлением какой либо из осей.

Рассмотрим функцию трех переменных: u = f (x , y , z ).

Зафиксируем точку М 0 (x 0 , y 0 , z 0 ) и какую-нибудь направленную прямую (ось)l , проходящую через эту точку. ПустьМ(x , y , z ) - произвольная точка этой прямой иМ 0 М - расстояние отМ 0 доМ.

u = f (x , y , z ) – f (x 0 , y 0 , z 0 ) – приращение функции в точкеМ 0 .

Найдем отношение приращения функции к длине вектора
:

Df . Производной функцииu = f (x , y , z ) по направлениюl в точкеМ 0 называется предел отношения приращения функции к длине вектораМ 0 М при стремлении последнего к 0 (или, что одно и то же, при неограниченном приближенииМ кМ 0 ):

(1)

Эта производная характеризует скорость изменения функции в точке М 0 в направленииl .

Пусть ось l (векторМ 0 М ) образует с осямиOX , OY , OZ углы
соответственно.

Обозначим x-x 0 =
;

y - y 0 =
;

z - z 0 =
.

Тогда вектор М 0 М = (x - x 0 , y - y 0 , z - z 0 )=
и его направляющие косинусы:

;

;

.

(4).

(4) – формула для вычисления производной по направлению.

Рассмотрим вектор, координатами которого являются частные производные функции u = f (x , y , z ) в точкеМ 0 :

grad u - градиент функцииu = f (x , y , z ) в точке М(x , y , z )

Свойства градиента:


Вывод : длина градиента функцииu = f (x , y , z ) – есть наиболее возможное значениев данной точкеМ(x , y , z ) , а направление вектораgrad u совпадает с направлением вектора, выходящего из точкиМ , вдоль которого функция меняется быстрее всего. То есть, направление градиента функции grad u - есть направление наискорейшего возрастания функции.

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 +Dх, у 0 +Dу).

Частные производные высших порядков. : Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части. Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков. Определение. Частные производные вида и т.д. называются смешанными производными. Теорема Шварца :

Если частные производные высших порядков ф.м.п. непрерывны, то смешанные производные одного порядка, отличающиеся лишь порядком дифференцирования = между собой.

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.

14. Уравнение касательной плоскости и нормали к поверхности!

Пусть N и N 0 – точки данной поверхности. Проведем прямую NN 0 . Плоскость, которая проходит через точку N 0 , называется касательной плоскостью к поверхности, если угол между секущей NN 0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN 0 .

Определение. Нормалью к поверхности в точке N 0 называется прямая, проходящая через точку N 0 перпендикулярно касательной плоскости к этой поверхности.

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М 0 (х 0 , у 0),касательная плоскость в точке N 0 (x 0 ,y 0, (x 0 ,y 0)) существует и имеет уравнение:

Уравнение нормали к поверхности в этой точке :

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 +Dх, у 0 +Dу).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

16. Скалярное поле и его характеристики.Линии ур-ня, производые по направлению,градиент скалярного поля.

Если каждой точке пространства ставится в соответствие скалярная величина , то возникает скалярное поле (например, поле температуры, поле электрического потенциала). Если введены декартовы координаты, то обозначают также или Поле может быть плоским, если центральным (сферическим), если цилиндрическим, если



Поверхности и линии уровня: Свойства скалярных полей можно наглядно изучать с помощью поверхностей уровня. Это поверхности в пространстве, на которых принимает постоянное значение. Их уравнение: . В плоском скалярном поле линиями уровня называют кривые, на которых поле принимает постоянное значение: В отдельных случаях линии уровня могут вырождаться в точки, а поверхности уровня в точки и кривые.

Производная по направлению и градиент скалярного поля:

Пусть единичный вектор с координатами - скалярное поле. Производная по направлению характеризует изменение поля в данном направлении и вычисляется по формуле Производная по направлению представляет собой скалярное произведение вектора и вектора с координатами , который называется градиентом функции и обозначается .Поскольку , где угол между и , то вектор указывает направление скорейшего возрастания поля а его модуль равен производной по этому направлению. Так как компоненты градиента являются частными производными, нетрудно получить следующие свойства градиента:

17. Экстремумы ф.м.п.Локальный экстремум ф.м.п., необходимые и достаточные условия его существования. Наибольшее и наименьшее значение ф.м.п. в огран. замкнутой области.

Пусть функция z = ƒ(х;у) определена в некоторой области D, точка N(x0;y0)

Точка (х0;у0) называется точкой максимума функции z=ƒ(х;у), если существует такая d-окрестность точки (х0;у0), что для каждой точки (х;у), отличной от (хо;уо), из этой окрестности выполняется неравенство ƒ(х;у)<ƒ(хо;уо). Аналогично определяется точка минимума функции: для всех точек (х; у), отличных от (х0;у0), из d-окрестности точки (хо;уо) выполняется неравенство: ƒ(х;у)>ƒ(х0;у0). Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумами. Отметим, что, в силу определения, точка экстремума функции лежит внутри области определения функции; максимум и минимум имеют локальный (местный) характер: значение функции в точке (х0;у0) сравнивается с ее значениями в точках, достаточно близких к (х0; у0). В области D функция может иметь несколько экстремумов или не иметь ни одного.



Необходимые(1) и достаточное(2) условия существования:

(1) Если в точке N(x0;y0) дифференцируемая функция z=ƒ(х;у) имеет экстремум, то ее частные производные в этой точке равны нулю: ƒ"x(х0;у0)=0, ƒ"y(х0;у0)=0. Замечание. Функция может иметь экстремум в точках, где хотя бы одна из частных производных не существует. Точка, в которой частные производные первого порядка функции z ≈ ƒ(х; у) равны нулю, т. е. f"x=0, f"y=0, называется стационарной точкой функ ции z.

Стационарные точки и точки, в которых хотя бы одна частная производная не существует, называются критическими точками

(2) Пусть в стационарной точке (хо;уо) и некоторой ее окрестности функция ƒ(х;у) имеет непрерывные частные производные до второго порядка включительно. Вычислим в точке (х0;у0) значения A=f""xx(x0;y0), В=ƒ""xy(х0;у0), С=ƒ""уy(х0;у0). Обозначим Тогда:

1. если Δ > 0, то функция ƒ(х;у) в точке (х0;у0) имеет экстремум: максимум, если А < 0; минимум, если А > 0;

2. если Δ < 0, то функция ƒ(х;у) в точке (х0;у0) экстремума не имеет.

3.В случае Δ = 0 экстремум в точке (х0;у0) может быть, может не быть. Необходимы дополнительные исследования.

Касательная плоскость и нормаль к поверхности.

касательная плоскость

Пусть N и N 0 – точки данной поверхности. Проведем прямую NN 0 . Плоскость, которая проходит через точку N 0 , называется касательной плоскостью к поверхности, если угол между секущей NN 0 и этой плоскостью стремится к нулю, когда стремится к нулю расстояние NN 0 .

Определение. Нормалью к поверхности в точке N 0 называется прямая, проходящая через точку N 0 перпендикулярно касательной плоскости к этой поверхности.

В какой – либо точке поверхность имеет, либо только одну касательную плоскость, либо не имеет ее вовсе.

Если поверхность задана уравнением z = f(x, y), где f(x, y) – функция, дифференцируемая в точке М 0 (х 0 , у 0), касательная плоскость в точке N 0 (x 0 ,y 0, (x 0 ,y 0)) существует и имеет уравнение:

Уравнение нормали к поверхности в этой точке:

Геометрическим смыслом полного дифференциала функции двух переменных f(x, y) в точке (х 0 , у 0) является приращение аппликаты (координаты z) касательной плоскости к поверхности при переходе от точки (х 0 , у 0) к точке (х 0 +х, у 0 +у).

Как видно, геометрический смысл полного дифференциала функции двух переменных является пространственным аналогом геометрического смысла дифференциала функции одной переменной.

Пример. Найти уравнения касательной плоскости и нормали к поверхности

в точке М(1, 1, 1).

Уравнение касательной плоскости:

Уравнение нормали:

20.4. Приближенные вычисления с помощью полного дифференциала.

Пусть функция f(x, y) дифференцируема в точке (х, у). Найдем полное приращение этой функции:

Если подставить в эту формулу выражение

то получим приближенную формулу:

Пример. Вычислить приближенно значение , исходя из значения функцииприx = 1, y = 2, z = 1.

Из заданного выражения определим x = 1,04 – 1 = 0,04, y = 1,99 – 2 = -0,01,

z = 1,02 – 1 = 0,02.

Найдем значение функции u(x, y, z) =

Находим частные производные:

Полный дифференциал функции u равен:

Точное значение этого выражения: 1,049275225687319176.

20.5. Частные производные высших порядков.

Если функция f(x, y) определена в некоторой области D, то ее частные производные итоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

Определение. Частные производные вида и т.д. называютсясмешанными производными.

Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение:

Т.е. частные производные высших порядков не зависят от порядка дифференцирования.

Аналогично определяются дифференциалы высших порядков.

…………………

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ ФУНКЦИЙ НЕСКОЛЬКИХ ПЕРЕМЕННЫХ.

Основные понятия и определения.

При рассмотрении функций нескольких переменных ограничимся подробным описанием функций двух переменных, т.к. все полученные результаты будут справедливы для функций произвольного числа переменных.

Если каждой паре независимых друг от друга чисел (х, у) из некоторого множества по какому - либо правилу ставится в соответствие одно или несколько значений переменной z, то переменная z называется функцией двух переменных.

Если паре чисел (х, у) соответствует одно значение z, то функция называется однозначной , а если более одного, то – многозначной .

Областью определения функции z называется совокупность пар (х, у), при которых функция z существует.

Окрестностью точки М 0 (х 0 , у 0) радиуса r называется совокупность всех точек (х, у), которые удовлетворяют условию .

Число А называется пределом функции f(x, y) при стремлении точки М(х, у) к точке М 0 (х 0 , у 0), если для каждого числа e > 0 найдется такое число r >0, что для любой точки М(х, у), для которых верно условие

также верно и условие .

Записывают:

Пусть точка М 0 (х 0 , у 0) принадлежит области определения функции f(x, y). Тогда функция z = f(x, y) называется непрерывной в точке М 0 (х 0 , у 0), если

(1)

причем точка М(х, у) стремится к точке М 0 (х 0 , у 0) произвольным образом.

Если в какой – либо точке условие (1) не выполняется, то эта точка называется точкой разрыва функции f(x, y). Это может быть в следующих случаях:

1) Функция z = f(x, y) не определена в точке М 0 (х 0 , у 0).

2) Не существует предел .

3) Этот предел существует, но он не равен f(x 0 , y 0).

Свойства функций нескольких переменных, связанные с их непрерывностью.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой и ограниченной области D, то в этой области найдется по крайней мере одна точка

N(x 0 , y 0 , …), такая, что для остальных точек верно неравенство

f(x 0 , y 0 , …) ³ f(x, y, …)

а также точка N 1 (x 01 , y 01 , …), такая, что для всех остальных точек верно неравенство

f(x 01 , y 01 , …) £ f(x, y, …)

тогда f(x 0 , y 0 , …) = M – наибольшее значение функции, а f(x 01 , y 01 , …) = m – наименьшее значение функции f(x, y, …) в области D.

Непрерывная функция в замкнутой и ограниченной области D достигает по крайней мере один раз наибольшего значения и один раз наименьшего.

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, а M и m – соответственно наибольшее и наименьшее значения функции в этой области, то для любой точки m Î существует точка

N 0 (x 0 , y 0 , …) такая, что f(x 0 , y 0 , …) = m.

Проще говоря, непрерывная функция принимает в области D все промежуточные значения между M и m. Следствием этого свойства может служить заключение, что если числа M и m разных знаков, то в области D функция по крайней мере один раз обращается в ноль.

Свойство. Функция f(x, y, …), непрерывная в замкнутой ограниченной области D, ограничена в этой области, если существует такое число К, что для всех точек области верно неравенство .

Свойство. Если функция f(x, y, …) определена и непрерывна в замкнутой ограниченной области D, то она равномерно непрерывна в этой области, т.е. для любого положительного числа e существует такое число D > 0, что для любых двух точек (х 1 , y 1) и (х 2 , у 2) области, находящихся на расстоянии, меньшем D, выполнено неравенство

2. Частные производные. Частные производные высших порядков.

Пусть в некоторой области задана функция z = f(x, y). Возьмем произвольную точку М(х, у) и зададим приращение Dх к переменной х. Тогда величина D x z = f(x + Dx, y) – f(x, y) называется частным приращением функции по х.

Можно записать

.

Тогда называется частной производной функции z = f(x, y) по х.

Обозначение:

Аналогично определяется частная производная функции по у.

Геометрическим смыслом частной производной (допустим ) является тангенс угла наклона касательной, проведенной в точке N 0 (x 0 , y 0 , z 0) к сечению поверхности плоскостью у = у 0 .

Если функция f(x, y) определена в некоторой области D, то ее частные производные и тоже будут определены в той же области или ее части.

Будем называть эти производные частными производными первого порядка.

Производные этих функций будут частными производными второго порядка.

Продолжая дифференцировать полученные равенства, получим частные производные более высоких порядков.

Частные производные вида и т.д. называются смешанными производными.

Теорема. Если функция f(x, y) и ее частные производные определены и непрерывны в точке М(х, у) и ее окрестности, то верно соотношение:

Т.е. частные производные высших порядков не зависят от порядка дифференцирования.

Аналогично определяются дифференциалы высших порядков.

…………………

Здесь n – символическая степень производной, на которую заменяется реальная степень после возведения в нее стоящего с скобках выражения.

Полный дифференциал. Геометрический смысл полного дифференциала. Касательная плоскость и нормаль к поверхности.

Выражение называется полным приращением функции f(x, y) в некоторой точке (х, у), где a 1 и a 2 – бесконечно малые функции при Dх ® 0 и Dу ® 0 соответственно.

Полным дифференциалом функции z = f(x, y) называется главная линейная часть относительно Dх и Dу приращения функции Dz в точке (х, у).

Для функции произвольного числа переменных:

Пример 3.1 . Найти полный дифференциал функции .

  • Разделы сайта