Как можно определить эффективный радиус атома. Атомный радиус: что такое и как определить

Важной характеристикой атома является его размер, т. е. атомный радиус. Размер отдельного атома не определен, поскольку внешняя его граница размыта за счет вероятностного нахождения электронов в различных точках околоядерного пространства. В силу этого, в зависимости от типа связи между атомами различают металлические, ковалентные, ван-дер-ваальсовы, ионные и др. атомные радиусы.

«Металлические» радиусы (r me) найдены путем деления пополам кратчайших межатомных расстояний в кристаллических структурах простых веществ с координационным числом 12. При других значениях к.ч. учитывается необходимая поправка.

Значения ковалентных радиусов (r cov) рассчитаны как половина длины гомоатомной связи. В случае невозможности определить длину одинарной гомоатомной связи, значение r cov атома элемента A получают вычитанием ковалентного радиуса атома элемента B из длины гетероатомной связи A-B. Ковалентные радиусы зависят, главным образом, от размеров внутренней электронной оболочки.

Радиусы валентно-несвязанных атомов - ван-дер-ваальсовы радиусы (r w) определяют эффективные размеры атомов, обусловленные силами отталкивания заполненных энергетических уровней.

Значения энергии электронов, определенные по правилам Слэтера. позволили оценить относительную величину - кажущийся размер атома - r cmp (эмпирический радиус).

Длина связи дана в ангстремах (1 Å = 0.1 нм = 100 пм).

Элемент r me r cov r w r cmp
H 0.46 0.37 1.20 0.25
He 1.22 0.32 1.40 -
Li 1.55 1.34 1.82 1.45
Be 1.13 0.90 - 1.05
B 0.91 0.82 - 0.85
C 0.77 0.77 1.70 0.70
N 0.71 0.75 1.55 0.65
O - 0.73 1.52 0.60
F - 0.71 1.47 0.50
Ne 1.60 0.69 1.54 -
Na 1.89 1.54 2.27 1.80
Mg 1.60 1.30 1.73 1.50
Al 1.43 1.18 - 1.25
Si 1.34 1.11 2.10 1.10
P 1.30 1.06 1.80 1.00
S - 1.02 1.80 1.00
Cl - 0.9 1.75 1.00
Ar 1.92 0.97 1.88 -
K 2.36 1.96 2.75 2.20
Ca 1.97 1.74 - 1.80
Sc 1.64 1.44 - 1.60
Ti 1.46 1.36 - 1.40
V 1.34 1.25 - 1.35
Cr 1.27 1.27 - 1.40
Mn 1.30 1.39 - 1.40
Fe 1.26 1.25 - 1.40
Co 1.25 1.26 - 1.35
Ni 1.24 1.21 1.63 1.35
Cu 1.28 1.38 1.40 1.35
Zn 1.39 1.31 1.39 1.35
Ga 1.39 1.26 1.87 1.30
Ge 1.39 1.22 - 1.25
As 1.48 1.19 1.85 1.15
Se 1.60 1.16 1.90 1.15
Br - 1.14 1.85 1.15
Kr 1.98 1.10 2.02 -
Rb 2.48 2.11 - 2.35
Sr 2.15 1.92 - 2.00
Y 1.81 1.62 - 1.80
Zr 1.60 1.48 - 1.55
Nb 1.45 1.37 - 1.45
Mo 1.39 1.45 - 1.45
Tc 1.36 1.56 - 1.35
Ru 1.34 1.26 - 1.30
Rh 1.34 1.35 - 1.35
Pd 1.37 1.31 1.63 1.40
Ag 1.44 1.53 1.72 1.60
Cd 1.56 1.48 1.58 1.55
In 1.66 1.44 1.93 1.55
Sn 1.58 1.41 2.17 1.45
Te 1.70 1.35 2.06 1.40
I - 1.33 1.98 1.40
Xe 2.18 1.30 2.16 -
Cs 2.68 2.25 - 2.60
Ba 2.21 1.98 - 2.15
La 1.87 1.69 - 1.95
Ce 1.83 - - 1.85
Pr 1.82 - - 1.85
Nd 1.82 - - 1.85
Pm - - - 1.85
Sm 1.81 - - 1.85
Eu 2.02 - - 1.80
Gd 1.79 - - 1.80
Tb 1.77 - - 1.75
Dy 1.77 - - 1.75
Ho 1.76 - - 1.75
Er 1.75 - - 1.75
Tm 1.74 - - 1.75
Yb 1.93 - - 1.75
Lu 1.74 1.60 - 1.75
Hf 1.59 1.50 - 1.55
Ta 1.46 1.38 - 1.45
W 1.40 1.46 - 1.35
Re 1.37 1.59 - 1.35
Os 1.35 1.28 - 1.30
Ir 1.35 1.37 - 1.35
Pt 1.38 1.28 1.75 1.35
Au 1.44 1.44 1.66 1.35
Hg 1.60 1.49 1.55 1.50
Tl 1.71 1.48 1.96 1.90
Pb 1.75 1.47 2.02 1.80
Bi 1.82 1.46 - 1.60
Po - - - 1.90
At - - - -
Rn - 1.45 - -
Fr 2.80 - - -
Ra 2.35 - - 2.15
Ac 2.03 - - 1.95
Th 180 - - 1.80
Pa 1.62 - - 1.80
U 1.53 - 1.86 1.75
Np 1.50 - - 1.75
Pu 1.62 - - 1.75
Am - - - 1.75

Общая тенденция изменения атомных радиусов такова. В группах атомные радиусы возрастают, так как с увеличением числа энергетических уровней увеличиваются размеры атомных орбиталей с большим значением главного квантового числа. Для d-элементов, в атомах которых заполняются орбитали предшествующего энергетического уровня, эта тенденция не имеет отчетливого характера при переходе от элементов пятого периода к элементам шестого периода.

В малых периодах радиусы атомов в целом уменьшаются, так как увеличение заряда ядра при переходе к каждому следующему элементу вызывает притяжение внешних электронов с возрастающей силой; число энергетических уровней в то же время остается постоянным.

Изменение атомного радиуса в периодах у d-элементов носит более сложный характер.

Величина атомного радиуса достаточно тесно связана с такой важной характеристикой атома, как энергия ионизации. Атом может терять один или несколько электронов, превращаясь в положительно заряженный ион - катион. Количественно эта способность оценивается энергией ионизации.

Список использованной литературы

  1. Попков В. А. , Пузаков С. А. Общая химия: учебник. - М.: ГЭОТАР-Медия, 2010. - 976 с.: ISBN 978-5-9704-1570-2. [с. 27-28]
  2. Волков, А.И., Жарский, И.М. Большой химический справочник / А.И. Волков, И.М. Жарский. - Мн.: Современная школа, 2005. - 608 с ISBN 985-6751-04-7.

Под эффективным радиусом атома или иона понимается радиус сферы его действия, причем атом (ион) считается несжимаемым шаром. Используя планетарную модель атома, его представляют как ядро, вокруг которого по орбиталям вращаются электроны. Последовательность элементов в Периодической системе Менделеева соответствует последовательности заполнения электронных оболочек. Эффективный радиус иона зависит от заполненности электронных оболочек, но он не равен радиусу наружной орбиты. Для определения эффективного радиуса представляют атомы (ионы) в структуре кристалла как соприкасающиеся жесткие шары, так что расстояние между их центрами равно сумме радиусов. Атомные и ионные радиусы определены экспериментально по рентгеновским измерениям межатомных расстояний и вычислены теоретически на основе квантово-механических представлений.

Размеры ионных радиусов подчиняются следующим закономерностям:

1. Внутри одного вертикального ряда периодической системы радиусы ионов с одинаковым зарядом увеличиваются с возрастанием атомного номера, поскольку растет число электронных оболочек, а значит, и размер атома.

2. Для одного и того же элемента ионный радиус возрастает с увеличением отрицательного заряда и уменьшается с увеличением положительного заряда. Радиус аниона больше радиуса катиона, поскольку у аниона имеется избыток электронов, а у катиона – недостаток. Например, у Fe, Fe 2+ , Fe 3+ эффективный радиус равен 0, 126, 0, 080 и 0, 067 нм соответственно, у Si 4- , Si, Si 4+ эффективный радиус равен 0, 198, 0, 118 и 0, 040 нм.

3. Размеры атомов и ионов следуют периодичности системы Менделеева; исключения составляют элементы от № 57 (лантан) до №71 (лютеций), где радиусы атомов не увеличиваются, а равномерно уменьшаются (так называемое лантаноидное сжатие), и элементы от № 89 (актиний) и дальше (так называемое актиноидное сжатие).

Атомный радиус химического элемента зависит от координационного числа . Увеличение координационного числа всегда сопровождается увеличением межатомных расстояний. При этом относительная разность значений атомных радиусов, соответствующих двум разным координационным числам, не зависит от типа химической связи (при условии, что тип связи в структурах со сравниваемыми координационными числами одинаков). Изменение атомных радиусов с изменением координационного числа существенно сказывается на величине объемных изменений при полиморфных превращениях. Например, при охлаждении железа, его превращение из модификации с гранецентрированной кубической решеткой в модификацию с объемно-центрированной кубической решеткой имеющее место при 906 о С, должно сопровождаться увеличением объема на 9%, в действительности увеличение объема составляет 0, 8%. Это связано с тем, что за счет изменения координационного числа от 12 до 8 атомный радиус железа уменьшается на 3%. Т.е., изменение атомных радиусов при полиморфных превращениях в значительной степени компенсируют те объемные изменения, которые должны были бы произойти, если бы при этом не менялся атомный радиус. Атомные радиусы элементов можно сопоставлять только при одинаковом координационном числе.

Атомные (ионные) радиусы зависят также от типа химической связи.

В кристаллах с металлической связью атомный радиус определяется как половина межатомного расстояния между ближайшими атомами. В случае твердых растворов металлические атомные радиусы меняются сложным образом.

Под ковалентными радиусами элементов с ковалентной связью понимают половину межатомного расстояния между ближайшими атомами, соединенными единичной ковалентной связью. Особенностью ковалентных радиусов является их постоянство в разных ковалентных структурах с одинаковыми координационными числами. Так, расстояния в одинарных связях С-С в алмазе и насыщенных углеводородах одинаковы и равны 0, 154 нм.

Ионные радиусы в веществах с ионной связью не могут быть определены как полусумма расстояний между ближайшими ионами. Как правило, размеры катионов и анионов резко различаются. Кроме того, симметрия ионов отличается от сферической. Существует несколько подходов к оценке величины ионных радиусов. На основании этих подходов оценивают ионные радиусы элементов, а затем из экспериментально определенных межатомных расстояний определяют ионные радиусы других элементов.

Ван-дер-ваальсовы радиусы определяют эффективные размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми атомными радиусами считают половину межъядерного расстояния между ближайшими одинаковыми атомами, не связанными между собой химической связью, т.е. принадлежащими разным молекулам (например, в молекулярных кристаллах).

При использовании в расчетах и построениях величин атомных (ионных) радиусов их значения следует брать из таблиц, построенных по одной системе.

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.

ЭФФЕКТИВНЫЙ АТОМНЫЙ РАДИУС - см. Радиус атомный.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЭФФЕКТИВНЫЙ АТОМНЫЙ РАДИУС" в других словарях:

    Величина в Å, характеризующая размер атомов. Обычно под этим понятием понимались эффективные Р. а., рассчитывающиеся как половина межатомного (межядерного) расстояния в гомоатомных соединениях, т. е. в металлах и неметаллах. Поскольку одни и … Геологическая энциклопедия

    Платина - (Platinum) Металл платина, химические и физические свойства платины Металл платина, химические и физические свойства платины, производство и применение платины Содержание Содержание Раздел 1. Происхождение названия платина. Раздел 2. Положение в… … Энциклопедия инвестора

    Характеристики, позволяющие приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. Атомные радиусы имеют порядок 0,1 нм. Определяются главным образом из данных рентгеновского структурного анализа. * * * АТОМНЫЕ… … Энциклопедический словарь

    Металл - (Metal) Определение металла, физические и химические свойства металлов Определение металла, физические и химические свойства металлов, применение металлов Содержание Содержание Определение Нахождение в природе Свойства Характерные свойства… … Энциклопедия инвестора

    94 Нептуний ← Плутоний → Америций Sm Pu … Википедия

    Запрос «Lithium» перенаправляется сюда; см. также другие значения. Эта статья о химическом элементе. О применении в медицине см. Препараты лития. 3 Гелий ← Литий … Википедия

    55 Ксенон ← Цезий → Барий … Википедия

    Исследования структуры в ва, основаны на изучении углового распределения интенсивности рассеяния исследуемым в вом излучения рентгеновского (в т. ч. синхротронного), потока электронов или нейтронов и мёссбауэровского g излучения. Соотв. различают … Химическая энциклопедия

Размеры частиц часто определяют тип кристаллической структуры, важны для понимания протекания многих химических реакций. Размер атомов, ионов, молекул определяется валентными электронами. Основа понимания этого вопроса – закономерности изменения орбитальных радиусов – изложены в подразд. 2.4. Атом не имеет границ и его размер – величина условная. Тем не менее можно характеризовать размер свободного атома орбитальным радиусом. Но практический интерес представляют обычно атомы и ионы в составе вещества (в молекуле, полимере, жидкости или твердом веществе), а не свободные. Поскольку состояния свободного и связанного атома существенно отличаются (и прежде всего их энергия), то должны отличаться и размеры.

Для связанных атомов тоже можно ввести характеризующие их размер величины. Хотя электронные облака связанных атомов могут существенно отличаться от сферических, размеры атомов принято характеризовать эффективными (кажущимися)радиусами .

Размеры атомов одного и того же элемента существенно зависят от того, в составе какого химического соединения, с каким типом связи находится атом. Например, для водорода половина межатомного расстояния в молекуле Н 2 равна 0,74/2 = 0,37 Å, а в металлическом водороде получается значение радиуса 0,46 Å. Поэтому выделяют ковалентные, ионные, металлические и вандерваальсовые радиусы . Как правило, в концепциях эффективных радиусов межатомные расстояния (точнее, межъядерные) считают суммой радиусов двух соседних атомов, принимая атомы за несжимаемые шары. При наличии надёжных и точных экспериментальных данных о межатомных расстояниях (а такие данные уже в течение длительного времени доступны и для молекул, и для кристаллов с точностью до тысячных долей ангстрема) для определения радиуса каждого атома остаётся одна проблема – как распределить межатомное расстояние между двумя атомами. Понятно, что эта проблема может быть решена однозначно только при введении дополнительных независимых данных или предположений.

Конец работы -

Эта тема принадлежит разделу:

Свойства химической связи

На сайте сайт читайте: "свойства химической связи"..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Ковалентные радиусы
Наиболее очевидна ситуация с ковалентными радиусами для атомов, которые образуют неполярные двухатомные молекулы. В таких случаях ковалентный радиус составляет ровно половину межатомного расстояния

Ионные радиусы
Поскольку при н. у. затруднительно наблюдать молекулы с ионными связями и в то же время известно большое количество соединений, образующих ионные кристаллы, то, когда речь идёт об ионных радиусах,

Металлические радиусы
Само по себе определение металлических радиусов не представляет проблем – достаточно измерить межъядерное расстояние в соответствующем металле и поделить пополам. В табл. 20 приведены некоторые мет

Вандерваальсовые радиусы
Вандерваальсовые радиусы можно определить, если измерить в кристалле расстояния между атомами, когда не существует никакой химической связи между ними. Иначе говоря, атомы принадлежат разным молеку

Вопросы для самопроверки
1. Что такое орбитальные и эффективные радиусы? 2. В чем отличие между радиусом дробинки и атома или иона? 3. В каких случаях ковалентный радиус равен половине длины

Эффективные заряды атомов
При образовании химической связи происходит перераспределение электронной плотности, и в случае полярной связи атомы оказываются электрически заряженными. Эти заряды называют эффективными. Они хара

Эффективные заряды в некоторых ионных кристаллах
Вещество CsF CsCl NaF NaCl LiF LiCl LiI DЭО 3,3

Эффективные заряды атомов в оксидах (по Н. С. Ахметову)
Оксид Na2O MgO Al2O3 SiO2 P2O5 SO

Вопросы для самопроверки
1. Что такое эффективный заряд атома? 2. Может ли эффективный заряд превышать (по модулю) степень окисления атома? 3. Что такое степень ионности связи? 4. К

Валентность
В общем валентность характеризует способность атомов элемента образовывать соединения, содержащие определённый состав (определённые соотношения количества разных элементов в соединении). Часто в ли

Вопросы для самопроверки
1. Дайте определения понятиям: степень окисления; ковалентность; координационное число; стерическое число. 2. Определите ковалентность, степень окисления и КЧ для: H2S; H

Энергия связи
Величина энергии – важнейшая характеристика связи, определяющая устойчивость веществ к нагреву, освещению, механическим воздействиям, реакциям с другими веществами[†]. Существуют различные методы э

Энергии связи двухатомных молекул в газе (Н. Н. Павлов)
Молекула H2 Li2 Na2 K2 F2 Cl2

Вопросы для самопроверки
1. Предскажите изменение энергии связи С–N в ряду Н3СNН2, Н2СNН, НСNН. 2. Предскажите изменение энергии связи в ряду О2, S2, Se2

Химическая связь и Периодическая система элементов
Рассмотрим закономерности строения и свойств некоторых простых веществ и простейших соединений, определяемые электронным строением их атомов. Атомы благородных газов (группа VIIIA) имеют полностью

Изменение межатомных расстояний для простых веществ группы VIA
Вещество Расстояние между атомами, Å внутри молекул между молекулами разность S

Дополнительный
3. Общая химия / под ред. Е. М. Соколовской. М.: Изд-во МГУ, 1989. 4. Угай Я. О. Общая химия. М.: Высш. шк., 1984. 5. Он же. Общая и неорганическая химия. М..