Справочник студента по органической химии. Основные понятия и законы органической химиии Органическая химия определение кратко

Органическая химия - раздел химии, изучающий соединения углерода, их структуру, свойства, методы синтеза, а также законы их превращений. Органическими называют соединения углерода с другими элементами (в основном с H, N, O, S, P, Si, Ge и др.).

Уникальная способность атомов углерода связываться друг с другом, образуя цепочки различной длины, циклические структуры разного размера, каркасные соединения, соединения со многими элементами, различные по составу и строению, обусловливает многообразие органических соединений. К настоящему времени число известных органических соединений на много превышает 10 млн. и увеличивается каждый год на 250-300 тыс. Окружающий нас мир построен в основном из органических соединений, к ним относятся: пища, одежда, топливо, красители, лекарства, моющие средства, материалы для самых различных отраслей техники и народного хозяйства. Органические соединения играют ключевую роль в существовании живых организмов.

На стыке органической химии с неорганической химией, биохимией и медициной возникли химия метало- и элементорганических соединений, биоорганическая и медицинская химия, химия высокомолекулярных соеди-нений.

Основным методом органической химии является синтез. Органическая химия изучает не только соединения, полученные из растительных и животных источников (природные вещества), но в основном соединения, созданные искусственно с помощью лабораторного и промышленного синтеза.

История развития органической химии

Способы получения различных органических веществ были известны ещё с древности. Так, египтяне и римляне использовали красители растительного проис-хож-де-ния - индиго и ализарин. Многие народы владели секретами производства спиртных на-пит-ков и уксуса из сахар- и крахмалсодержащего сырья.

Во времена средневековья к этим знаниям практически ничего не прибавилось, некоторый прогресс начался только в 16-17 веках (период ятрохимии), когда путем перегонки растительных продуктов были выделены новые органические соединения. В 1769-1785 г. К.В. Шееле выделил несколько органических кислот: яблочную, винную, лимонную, галловую, молочную и щавелевую. В 1773 г. Г.Ф. Руэль выделил мочевину из человеческой мочи. Выделенные из животного и растительного сырья вещества имели между собой много общего, но отличались от неорганических соединений. Так возник термин «Органическая химия» - раздел химии, изучающий вещества, выделенные из организмов (определение Й.Я . Берцелиуса , 1807 г.). При этом полагали, что эти вещества могут быть получены только в живых организмах благодаря «жизненной силе».

Принято считать, что органическая химия как наука появилась в 1828 г., когда Ф. Вёлер впервые получил органическое вещество - мочевину - в результате упаривания водного раствора неорганического вещества - цианата аммония (NH 4 OCN). Дальнейшие экспериментальные работы продемонстрировали неоспоримые аргументы несосто-ятельности теории «жизненной силы». Так, например, А. Кольбе синтезировал уксусную кислоту, М. Бертло получил метан из H 2 S и CS 2 , а А.М. Бутлеров синтезировал сахарис-тые вещества из формалина.

В середине 19 в. продолжается бурное развитие синтетической органической хи-мии, создаются первые промышленные производства органических веществ (А. Гофман, У. Перкин-старший - синтетические красители, фуксин, цианиновые и азакрасители). Усовершенствование открытого Н.Н. Зининым (1842 г.) способа синтеза анилина послужило основой для создания анилинокрасочной промышленности. В лаборатории А. Байера были синтезированы природные красители - индиго, ализарин, индигоидные, ксантеновые и антрахиноновые.

Важным этапом в развитии теоретической органической химии стала разработка Ф.А. Кекуле теории валент-ности в 1857 г., а также классической теории химического строения А.М . Бутлеровым в 1861 г., согласно которой атомы в молекулах соединяются в соответствии с их валентностью, химические и физические свойства соединений определяются природой и числом входящих в них атомов, а также типом связей и взаимным влиянием непосредственно несвязанных атомов. В 1865 г. Ф . Кекуле предложил структурную форму-лу бензола, что стало одним из важнейших открытий в органической химии. В.В. Марковников и А.М. Зайцев сформулировали ряд правил, впервые связавших направление органических реакций со строением вступающих в них веществ. В 1875 г. Вант-Гофф и Ле Бель предложили тетраэдрическую модель атома углерода, по которой валентности углерода направлены к вершинам тетраэдра, в центре которого размещён атом углерода. На основе этой модели, в сочетании с экспериментальными исследованиями И. Вислиценуса (!873 г.), показавшего идентичность структурных формул (+)-молочной кислоты (из кислого молока) и (±)-молочной кислоты, возникла стереохимия - наука о трёхмерной ориентации атомов в молекулах, которая предсказывала в случае наличия 4 различных заместителей при атоме углерода (хиральные структуры) возможность существования пространственно-зеркальных изомеров (антиподов или энантиомеров).

В 1917 г. Льюис предложил рассматривать химическую связь с помощью электронных пар.

В 1931 г. Хюккель применил квантовую теорию для объяснения свойств небензоидных ароматических систем, чем основал новое направление в органической химии - квантовую химию. Это послужило толчком для дальнейшего интенсивного развития квантовохимических методов, в частности метода молекулярных орбиталей. Этап проникновения орбитальных представлений в органическую химию открыла теория резонанса Л. Полинга (1931-1933 г.г.) и далее работы К. Фукуи, Р. Вудворда и Р. Хофмана о роли граничных орбиталей в определении направления химических реакций.

Середина 20 в. характеризуется особенно бурным развитием органического синтеза. Это определялось открытием основополагающих процессов, таких как получе-ние олефинов с использованием илидов (Г. Виттиг , 1954 г.), диеновый синтез (О. Дильс и К. Альдер , 1928 г.), гидроборирование непредельных соединений (Г. Браун , 1959 г.), синтез нуклеотидов и синтез гена (А. Тодд , Х. Корана ). Успехи в химии метало-органических соединений во многом обязаны работам А.Н. Несмеянова и Г.А. Разуваева . В 1951 г. был осуществлен синтез ферроцена, установление «сэндвичевой» структуры которого Р. Вудвордом и Дж. Уилкинсоном положило начало химии металлоценовых соединений и вообще органической химии переходных металлов.

В 20-30 г.г. А.Е. Арбузов создает основы химии фосфорорганических соединений, что впоследствии привело к открытию новых типов физиологически активных соединений, Комплексонов и др.

В 60-80 г.г. Ч. Педерсен , Д. Крам и Ж.М. Лен разрабатывают химию краун-эфиров, криптандов и других родственных структур, способных образовывать прочные молеку-ляр-ные комплексы, и тем самым подходят к важнейшей проблеме «молекулярного узнава-ния».

Современная органическая химия продолжает своё бурное развитие. В практику органического синтеза вводятся новые реагенты, принципиально новые синтетические методы и приемы, новые катализаторы, синтезируются неизвестные ранее органические структуры. Постоянно ведется поиск органических новых биологически активных соединений. Еще многие проблемы органической химии ждут своего решения, например, детальное установление взаимосвязи структура - свойства (в том числе, биологическая активность), установление строения и стереонаправленный синтез сложных природных соединений, разработка новых регио- и стереоселективных синтетических методов, поиск новых универсальных реагентов и катализаторов.

Интерес мирового сообщества к развитию органической химии ярко проде-мон-стрирован вручением Нобелевской премии по химии 2010 г. Р. Хеку, А. Судзуки и Э. Нэгиси за работы по применению палладиевых катализаторов в органическом синтезе для формирования связей углерод - углерод.

Классификация органических соединений

В основе классификации лежит структура органических соединений. Основа описания структуры - структурная формула.

Основные классы органических соединений

Углеводороды - соединения, состоящие только из углерода и водорода. Они в свою очередь делятся на:

Насыщенные - содержат только одинарные (σ-связи) и не содержат кратные связи;

Ненасыщенные - имеют в своём составе хотя бы одну двойную (π-связь) и/или тройную связь;

С открытой цепью (алициклические);

С замкнутой цепью (циклические) - содержат цикл

К ним относятся алканы, алкены, алкины, диены, циклоалканы, арены

Соединения с гетероатомами в функциональных группах - соединения, в которых углеродный радикал R связан с функциональной группой. Такие соединения классифицируют по характеру функциональной группы:

Спирт, фенолы (содержат гидроксильную группу ОН)

Простые эфиры (содержат группировку R-O-R или R-O-R

Карбонильные соединения (сожержат группировку RR"C=O), к ним относятся альдегиды, кетоны, хиноны.

Соединения, содержащие карбоксильную группу (СООН или СООR), к ним относятся карбоновые кислоты, сложные эфиры

Элемент- и металлорганические соединения

Гетероциклические соединения - содержат гетероатомы в составе цикла. Различаются по характеру цикла (насыщенный, ароматический), по числу атомов в цикле (трех-, четырёх-, пяти-, шестичленные циклы и т.д.), по природе гетероатома, по количеству гетероатомов в цикле. Это определяет огромное разнообразие известных и ежегодно синтезируемых соединений этого класса. Химия гетероциклов представляет собой одну из наиболее увлекательных и важных областей органической химии. Достаточно сказать, что более 60% лекарственных препаратов синтетического и природного происхождения относятся к различным классам гетероциклических соединений.

Природные соединения - соединения, как правило, достаточно сложного строения, зачастую принадлежащие сразу к нескольким классам органических соединений. Среди них можно выделить: аминокислоты, белки , углеводы , алкалоиды , терпены и др.

Полимеры - вещества с очень большой молекулярной массой, состоящие из периодически повторяющихся фрагментов - мономеров.

Строение органических соединений

Органические молекулы в основном образованы ковалентными неполярными связями С-С, или ковалентными полярными связями типа С-О, C-N, C-Hal. Полярность объясняется смещением электронной плотности в сторону более электроотрицательного атома. Для описания строения органических соединений химики используют язык структурных формул молекул, в которых связи между отдельными атомами обозначаются с помощью одного (простая, или одинарная связь), двух (двойная) или трёх (тройная) валентных штрихов. Понятие валентного штриха, которое не потеряло своего значения и по сей день, ввел в органическую химию А. Купер в 1858 г

Очень существенным для понимания строения органических соединений является понятие о гибридизации атомов углерода. Атом углерода в основном состоянии имеет электронную конфигурацию 1s 2 2s 2 2p 2 , на основе которой невозможно объяснить присущую углероду в его соединениях валентность 4 и существование 4 идентичных связей в алканах, направленных к вершинам тетраэдра. В рамках метода валентных связей это противоречие разрешается введением понятия о гибридизации. При возбуждении осуществляется s p переход электрона и последующая, так называемая, sp- гибридизация, причем энергия гибридизованных орбиталей является промежуточной между энергиями s - и p -орбиталей. При образовании связей в алканах три р -электрона взаимодействуют с одним s -электроном (sp 3 -гибридизация) и возникают 4 одинаковые орбитали, расположенные под тетраэдрическими углами (109 о 28") друг к другу. Атомы углерода в алкенах находятся в sp 2 -гибридном состоянии: у каждого атома углерода имеют три одинаковые орбитали, лежащие в одной плоскости под углом 120 о друг к другу (sp 2 -орбитали), а четвертая (р -орбиталь) перпендикулярна этой плоскости. Перекрывание р -орбиталей двух атомов углерода образует двойную (π) связь. Атомы углерода, несущие тройную связь находятся в sp -гибридном состоянии.

Особенности органических реакций

В неорганических реакциях обычно участвуют ионы, такие реакции проходят быстро и до конца при комнатной температуре. В органических реакциях часто происходят разрывы ковалентных связей с образованием новых. Как правило, эти процессы требуют особых условий: определённой температуры, времени реакции, определенных растворителей, и часто наличия катализатора. Обычно протекает не одна, а сразу несколько реакций, Поэтому при изо-бра-жении органических реакций используют не уравнения, а схемы без расчёта сте-хио-метрии. Выходы целевых веществ в органических реакциях зачастую не превышают 50%, а выделение их из реакционной смеси и очистка требуют специфических методов и приёмов. Для очистки твердых веществ, как правило, используют перекристаллизацию из специально подобранных растворителей. Жидкие вещества очищают перегонкой при атмосферном давлении или в вакууме (в зависимости от температуры кипения). Для контролем за ходом реакций, разделения сложных реакционных смесей прибегают к различным видам хроматографии [тонкослойная хроматография (ТСХ), препаративная высокоэффективная жидкостная хроматография (ВЭЖХ) и др.].

Реакции могут протекать очень сложно и в несколько стадий. В качестве промежуточных соединений могут возникать радикалы R·, карбкатионы R + , карбанионы R - , карбены:СХ 2 , катион-радикалы, анион-радикалы и другие активные и нестабильные частицы, обычно живущие доли секунды. Подробное описание всех превращений, происходящих на молекулярном уровне во время реакции, называется механизмом реакции . По характеру разрыва и образования связей различают радикальные (гомолитические) и ионные (гетеролитические) про-цессы. По типам превращений различают цепные радикальные реакции, реакции нуклеофильного (алифатического и ароматического) замещения, реакции элими-ни-ро-вания, электрофильного присоединения, электрофильного замещения, конденсации, циклизации, процессы перегруппировок и др. Реакции классифицируют также по способам их инициирования (возбуждения), их кинетическому порядку (моно-молекулярные, бимолекулярные и др.).

Определение структуры органических соединений

За всё время существования органической химии как науки важнейшей задачей было определить структуру органических соединений. Это значит узнать, какие атомы входят в состав структуры, в каком порядке и каким образом эти атомы связаны между собой и как расположены в пространстве.

Существует несколько методов решения этих задач.

  • Элементный анализ заключается в том, что вещество разлагают на более простые молекулы, по количеству которых можно определить количество атомов, входящих в состав соединения. Этот метод не дает возможности установить порядок связей между атомами. Часто используется лишь для подтверждения предложенной структуры.
  • Инфракрасная спектроскопия (ИК спектроскопия) и спектроскопия комбинационного рассеяния (спектроскопия КР). Метод основан на том, что вещество взаимодействует с электромагнитным излучением (светом) инфра-крас-ного диапазона (в ИК спектроскопии наблюдают поглощение, в КР спектроскопии - рассеяние излучения). Этот свет при поглощении возбуждает коле-бательные и вращательные уровни молекул. Опорными данными служат число, частота и интен-сивность колебаний молекулы, связанных с изменением дипольного момента (ИК) или поляризуемости (КР). Метод позволяет установить наличие функ-циональных групп, а также часто используется для подтверждения иден-тичности вещества с некоторым уже известным веществом путём сравнения их спектров.
  • Масс-спектрометрия . Вещество при определённых условиях (электронный удар, химическая ионизация и др.) превращается в ионы без потери атомов (моле-кулярные ионы) и с потерей (осколочные, фрагментарные ионы). Метод позволяет оп-ре-делить молекулярную массу вещества, его изотопный состав, иногда наличие функциональных групп. Характер фрагментации позволяет сделать некоторые вы-во-ды об особенностях строения и воссоздать структуру исследуемого соеди-нения.
  • Метод ядерного магнитного резонанса (ЯМР) основан на взаимодействии ядер, обладающих собственным магнитным моментом (спином) и помещенных во внешнее постоянное магнитное поле (переориентация спина), с переменным электромагнитным излучением радиочастотного диапазона. ЯМР представляет собой один из самых главных и информативных методов определения химической структуры. Метод используют также для изучения пространственного строения и динамики молекул. В зависимости от ядер, взаимодействующих с излучением различают, например, метод протонного резонанса ПМР, ЯМР 1 Н), позволяющий определять положение атомов водорода в молекуле. Метод ЯМР 19 F позволяет определять наличие и положение атомов фтора. Метод ЯМР 31 Р дает информацию о наличии, валентном состоянии и положении атомов фосфора в молекуле. Метод ЯМР 13 С позволяет определять число и типы углеродных атомов, он используется для изучения углеродного скелета молекулы. В отличие от первых трёх в последнем методе используется неосновной изотоп элемента, поскольку ядро основного изотопа 12 С имеет нулевой спин и не может наблюдаться методом ЯМР.
  • Метод ультрафиолетовой спектроскопии (УФ спектроскопия) или спектроскопия электронных переходов. Метод основан на поглощении электро-магнитного излучения ультрафиолетовой и видимой области спектра при переходе электронов в молекуле с верхних заполненных энергетических уровней на вакант-ные (возбуждение молекулы). Чаще всего используется для определения наличия и характеристики сопряженных π-систем.
  • Методы аналитической химии позволяют определять наличие некоторых функциональных групп по специфическим химическим (качественным) реакциям, факт протекания которых можно фиксировать визуально (например, появление или изменение окраски) или с помощью других методов. Помимо химических методов анализа в органической химии все большее применение находят инструментальные аналитические методы, такие как хроматография (тонкослойная, газовая, жид-костная). Почетное место среди них занимает хроматомасс-спектромерия, позво-ляющая не только оценить степень чистоты полученных соединений, но и полу-чить масс-спектральную информацию о компонентах сложных смесей.
  • Методы исследования стереохимии органических соединений . С начала 80 г.г. стала очевидной целесообразность разработки нового направления в фармакологии и фармации, связанного с созданием энантиомерно чистых лекарственных средств с оптимальным соотношением терапевтической эффективности и безопасности. В настоящее время примерно 15% всех синтезируемых фармпрепаратов представ-лены чистыми энантиомерами. Отражением данной тенденции стало появление в научной литературе последних лет термина chiral switch , что в русском переводе означает ”переключение на хиральные молекулы”. В связи с этим особое значение в органической химии приобретают методы установления абсолютной конфи-гурации хиральных органических молекул и определения их оптической чистоты. Основным методом определения абсолютной конфигурации следует считать рентгеноструктурный анализ (РСА), а оптической чистоты - хроматографию на колонках с неподвижной хиральной фазой и метод ЯМР с использованием специальных дополнительных хиральных реагентов.

Связь органической химии с химической промышленностью

Основной метод органической химии - синтез - тесно связывает органическую химию с химической промышленностью. На основе методов и разработок синтетической органической химии возник малотоннажный (тонкий) органический синтез, включающий производство лекарств, витаминов, ферментов , феромонов, жидких кристаллов, орга-нических полупроводников, солнечных батарей и др. Развитие крупнотоннажного (основ-ного) органического синтеза также базируется на достижениях органической химии. К основному органическому синтезу относится производство искусственных волокон, пластмасс, переработка нефти, газа и каменноугольного сырья.

Рекомендуемая литература

  • Г.В. Быков, История органической химии , М.: Мир, 1976 (http://gen.lib/rus.ec/get?md5=29a9a3f2bdc78b44ad0bad2d9ab87b87)
  • Дж. Марч, Органическая химия: реакции, механизмы и структура , в 4 томах, М.: Мир, 1987
  • Ф. Кери, Р. Сандберг, Углубленный курс органической химии , в 2 томах, М.: Химия, 1981
  • О.А. Реутов, А.Л. Курц, К.П. Бутин, Органическая химия , в 4 частях, М.: « Бином, Лаборатория знаний», 1999-2004. (http://edu.prometey.org./library/autor/7883.html)
  • Химическая энциклопедия , под ред. Кнунянца, М.: «Большая Российская энциклопедия», 1992.
– раздел химической науки, изучающий углеводороды – вещества, содержащие углерод и водород, а также различные производные этих соединений, включающие атомы кислорода, азота и галогенов. Все такие соединения называют органическими.

Органическая химия возникла в процессе изучения тех веществ, которые добывались из растительных и животных организмов, состоящих в основной своей массе из органических соединений. Именно это определило чисто историческое название таких соединений (организм – органический). Некоторые технологии органической химии возникли еще в глубокой древности, например, спиртовое и уксуснокислое брожение, использование органических красителей индиго и ализарина, процессы дубления кожи и др. В течение долгого времени химики умели лишь выделять и анализировать органические соединения, но не могли получать их искусственно, в результате чего возникло убеждение, что органические соединения могут быть получены только с помощью живых организмов. Начиная со второй половины 19 в. методы органического синтеза стали интенсивно развиваться, что позволило постепенно преодолеть устоявшееся заблуждение. Впервые синтез органических соединений в лаборатории удалось осуществить Ф.Велеру ne(в период 1824–1828), при гидролизе дициана он получил щавелевую кислоту, выделяемую до этого из растений, а при нагревании циановокислого аммония за счет перестройки молекулы (см . ИЗОМЕРИЯ) получил мочевину – продукт жизнедеятельности живых организмов (рис. 1).

Рис. 1. ПЕРВЫЕ СИНТЕЗЫ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Сейчас многие из соединений, присутствующих в живых организмах, можно получить в лаборатории, кроме того, химики постоянно получают органические соединения, не встречающиеся в живой природе.

Становление органической химии как самостоятельной науки произошло в середине 19 в., когда благодаря усилиям ученых-химиков, стали формироваться представления о строении органических соединений. Наиболее заметную роль сыграли работы Э.Франкланда (определил понятие валентности), Ф.Кекуле (установил четырехвалентность углерода и строение бензола), А. Купера (предложил используемый и поныне символ валентной черты, соединяющей атомы при изображении структурных формул),А.М.Бутлерова (создал теорию химического строения, в основе которой лежит положение, согласно которому свойства соединения определяются не только его составом, но и тем, в каком порядке соединены атомы).

Следующий важный этап в развитии органической химии связан с работами Я.Вант-Гоффа , который изменил сам способ мышления химиков, предложив перейти от плоского изображения структурных формул к пространственному расположению атомов в молекуле, в итоге химики стали рассматривать молекулы как объемные тела.

Представления о природе химической связи в органических соединениях впервые сформулировал Г.Льюис , предположивший, что атомы в молекуле связаны с помощью электронов: пара обобщенных электронов создает простую связь, а две или три пары образуют, соответственно, двойную и тройную связь. Рассматривая распределение электронной плотности в молекулах (например, ее смещение под влиянием электроотрицательных атомов O, Cl и др.) химики смогли объяснить реакционную способность многих соединений, т.е. возможность их участия в тех или иных реакциях.

Учет свойств электрона, определяемых квантовой механикой, привел к развитию квантовой химии, использующей представления о молекулярных орбиталях . Сейчас квантовая химия, показавшая на многих примерах свою предсказательную силу, успешно сотрудничает с экспериментальной органической химией.

Небольшую группу соединений углерода не относят к органическим: угольная кислота и ее соли (карбонаты), цианистоводородная кислота HCN и ее соли (цианиды), карбиды металлов и некоторые другие соединения углерода, которые изучает неорганическая химия.

Главная особенность органической химии – исключительное разнообразие соединений, которое возникло из-за способности атомов углерода соединяться друг с другом в практически неограниченном количестве, образуя молекулы в виде цепочек и циклов. Еще большее разнообразие достигается за счет включения между атомами углерода атомов кислорода, азота и др. Явление изомерии , благодаря которому молекулы, обладающие одинаковым составом, могут иметь различное строение, дополнительно увеличивает многообразие органических соединений. Сейчас известно свыше 10 млн. органических соединений, причем их количество ежегодно увеличивается на 200–300 тысяч.

Классификация органических соединений. В качестве основы при классификации приняты углеводороды, их считают базовыми соединениями в органической химии. Все остальные органические соединения рассматривают как их производные.

При систематизации углеводородов принимают во внимание строение углеродного скелета и тип связей, соединяющих атомы углерода.

I. АЛИФАТИЧЕСКИЕ (aleiphatos. греч. масло) углеводороды представляют собой линейные или разветвленные цепочки и не содержат циклических фрагментов, они образуют две крупные группы.

1. Предельные или насыщенные углеводороды (названы так потому, что не способны что-либо присоединять) представляют собой цепочки атомов углерода, соединенных простыми связями и окруженных атомами водорода (рис. 1). В том случае, когда цепочка имеет разветвления, к названию добавляют приставку изо . Простейший насыщенный углеводород – метан, с него начинается ряд этих соединений.

Рис. 2. НАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Основные источники насыщенных углеводородов – нефть и природный газ. Реакционная способность насыщенных углеводородов очень низкая, они могут реагировать только с наиболее агрессивными веществами, например, с галогенами или с азотной кислотой. При нагревании насыщенных углеводородов выше 450 С° без доступа воздуха разрываются связи С-С и образуются соединения с укороченной углеродной цепью. Высокотемпературное воздействие в присутствии кислорода приводит к их полному сгоранию до СО 2 и воды, что позволяет эффективно использовать их в качестве газообразного (метан – пропан) или жидкого моторного топлива (октан).

При замещении одного или нескольких атомов водорода какой-либо функциональной (т.е. способной к последующим превращениям) группой образуются соответствующие производные углеводородов. Соединения, содержащие группировку С-ОН, называют спиртами, НС=О – альдегидами, СООН – карбоновыми кислотами (слово «карбоновая» добавляют для того, чтобы отличить их от обычных минеральных кислот, например, соляной или серной). Соединение может содержать одновременно различные функциональные группы, например, СООН и NH 2 , такие соединения называют аминокислотами. Введение в состав углеводорода галогенов или нитрогрупп приводит соответственно к галоген- или нитропроизводным (рис. 3).


Рис. 4. ПРИМЕРЫ НАСЫЩЕННЫХ УГЛЕВОДОРОДОВ с функциональными группами

Все показанные производные углеводородов образуют крупные группы органических соединений: спирты, альдегиды, кислоты, галогенпроизводные и т.д. Поскольку углеводородная часть молекулы имеет очень низкую реакционную способность, химическое поведение таких соединений определяется химическими свойствами функциональных групп –ОН, -СООН, -Cl, -NO 2 и др..

2. Ненасыщенные углеводороды имеют те же варианты строения основной цепи, что и насыщенные, но содержат двойные или тройные связи между атомами углерода (рис. 6). Простейший ненасыщенный углеводород – этилен.

Рис. 6. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ

Наиболее характерно для ненасыщенных углеводородов присоединение по кратной связи (рис. 8), что позволяет синтезировать на их основе разнообразные органические соединения.

Рис. 8. ПРИСОЕДИНЕНИЕ РЕАГЕНТОВ к ненасыщенным соединениям по кратной связи

Другое важное свойство соединений с двойными связями - их способность полимеризоваться (рис. 9.), двойные связи при этом раскрываются, в результате образуются длинные углеводородные цепи.


Рис. 9. ПОЛИМЕРИЗАЦИЯ ЭТИЛЕНА

Введение в состав ненасыщенных углеводородов упомянутых ранее функциональных групп так же, как и в случае насыщенных углеводородов, приводит к соответствующим производным, которые также образуют крупные группы соответствующих органических соединений – ненасыщенные спирты, альдегиды и т.д. (рис. 10).

Рис. 10. НЕНАСЫЩЕННЫЕ УГЛЕВОДОРОДЫ с функциональными группами

Для показанных соединений приведены упрощенные названия, точное положение в молекуле кратных связей и функциональных групп указывают в названии соединения, которое составляют по специально разработанным правилам.

Химическое поведение таких соединений определяется как свойствами кратных связей, так и свойствами функциональных групп.

II. КАРБОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат циклические фрагменты, образованные только атомами углерода. Они образуют две крупные группы.

1. Алициклические (т.е. и алифатические и циклические одновременно) углеводороды. В этих соединениях циклические фрагменты могут содержать как простые, так и кратные связи, кроме того, соединения могут содержать несколько циклических фрагментов, к названию этих соединений добавляют приставку «цикло», простейшее алициклическое соединение – циклопропан (рис. 12).


Рис. 12. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ

Помимо показанных выше существуют иные варианты соединения циклических фрагментов, например, они могут иметь один общий атом, (так называемые, спироциклические соединения), либо соединяться таким образом, чтобы два или более атомов были общими для обоих циклов (бициклические соединения), при объединении трех и более циклов возможно также образование углеводородных каркасов (рис. 14).


Рис. 14. ВАРИАНТЫ СОЕДИНЕНИЯ ЦИКЛОВ в алициклических соединениях: спироциклы, бициклы и каркасы. В названии спиро- и бициклических соединений указывают тот алифатический углеводород, который содержит такое же общее число атомов углерода, например, в показанном на рисунке спироцикле содержится восемь атомов углерода, поэтому его название построено на основе слова «октан». В адамантане атомы расположены так же, как в кристаллической решетке алмаза, что определило его название (греч. adamantos – алмаз)

Многие моно- и бициклические алициклические углеводороды, а также производные адамантана входят в состав нефти, их обобщенное название – нафтены.

По химическим свойствам алициклические углеводороды близки соответствующим алифатическим соединениям, однако, у них появляется дополнительное свойство, связанное с их циклическим строением: небольшие циклы (3–6-членные) способны раскрываться, присоединяя некоторые реагенты (рис. 15).


Рис. 15. РЕАКЦИИ АЛИЦИКЛИЧЕСКИХ УГЛЕВОДОРОДОВ , протекающие с раскрытием цикла

Введение в состав алициклических углеводородов различных функциональных групп приводит к соответствующим производным – спиртам, кетонам и т.п. (рис. 16).

Рис. 16. АЛИЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ с функциональными группами

2. Вторую крупную группу карбоциклических соединений образуют ароматические углеводороды бензольного типа, т.е содержащие в своем составе один или несколько бензольных циклов (существуют также ароматические соединения небензольного типа (см . АРОМАТИЧНОСТЬ ). При этом они могут также содержать фрагменты насыщенных или ненасыщенных углеводородных цепей (рис. 18).


Рис. 18. АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ .

Существуют группа соединений, в которых бензольные кольца как бы спаяны между собой, это так называемые конденсированные ароматические соединения (Рис. 20).


Рис. 20. КОНДЕНСИРОВАННЫЕ АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ

Многие ароматические соединения, в том числе и конденсированные (нафталин и его производные) входят в состав нефти, второй источник этих соединений – каменноугольная смола.

Для бензольных циклов не характерны реакции присоединения, которые проходят с большим трудом и в жестких условиях, наиболее типичны для них реакции замещения атомов водорода (рис.21).

Рис. 21. РЕАКЦИИ ЗАМЕЩЕНИЯ атомов водорода в ароматическом ядре.

Помимо функциональных групп (галогена, нитро- и ацетильной группы), присоединенных к бензольному ядру (рис. 21), можно также ввести иные группы, в результате получаются соответствующе производные ароматических соединений (рис. 22), образующие крупные классы органических соединений – фенолы, ароматические амины и др.


Рис. 22. АРОМАТИЧЕСКИЕ СОЕДИНЕНИЯ с функциональными группами. Соединения, в которых neгруппа -ОН соединена с атомом углерода в ароматическом ядре, называют фенолами, в отличие от алифатических соединений, где такие соединения называют спиртами.

III. ГЕТЕРОЦИКЛИЧЕСКИЕ УГЛЕВОДОРОДЫ содержат в составе цикла (помимо атомов углерода) различные гетероатомы: O, N, S. Циклы могут быть различного размера, содержать как простые, так и кратные связи, а также присоединенные к гетероциклу углеводородные заместители. Существуют варианты, когда гетероцикл «спаян» с бензольным ядром (рис. 24).

Рис. 24. ГЕТЕРОЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ . Их названия сложились исторически, например, фуран получил название от фуранового альдегида – фурфурола, получаемого из отрубей (лат. furfur – отруби). Для всех показанных соединений реакции присоединения затруднены, а реакции замещения проходят достаточно легко. Таким образом, это ароматические соединения небензольного типа.

Разнообразие соединений этого класса увеличивается дополнительно за счет того, что гетероцикл может содержать два и более гетероатомов в цикле (рис. 26).


Рис. 26. ГЕТЕРОЦИКЛЫ с двумя и более гетероатомами.

Точно так же, как и рассмотренные ранее алифатические, алициклические и ароматические углеводороды, гетероциклы могут содержать в своем составе различные функциональные группы (-ОН, -СООН, -NH 2 и др.), причем гетероатом в цикле в некоторых случаях также можно рассматривать как функциональную группу, поскольку он способен принимать участие в соответствующих превращениях (рис. 27).


Рис. 27. ГЕТЕРОАТОМ N в роли функциональной группы. В названии последнего соединения буква «N» указывает, к какому атому присоединена метильная группа.

Реакции органической химии. В отличие от реакций неорганической химии, где с высокой скоростью (иногда мгновенно) взаимодействуют ионы, в реакциях органических соединений обычно участвуют молекулы, содержащие ковалентные связи. В результате все взаимодействия протекают гораздо медленнее, чем в случае ионных соединений (иногда десятки часов), часто при повышенной температуре и в присутствии ускоряющих процесс веществ – катализаторов. Многие реакции протекают через промежуточные стадии или в нескольких параллельных направлениях, что приводит к заметному снижению выхода нужного соединения. Поэтому при описании реакций вместо уравнений с числовыми коэффициентами (что традиционно принято в неорганической химии) часто используют схемы реакций без указания стехиометрических соотношений.

Название крупных классов органических реакций часто связывают с химической природой действующего реагента или с типом вводимой в соединение органической группы:

а) галогенирование – введение атома галогена (рис. 8, первая схема реакции),

б) гидрохлорирование, т.е. воздействие HCl (рис. 8, вторая схема реакции)

в) нитрование – введение нитрогруппы NO 2 (рис. 21, второе направление реакции)

г) металлирование – введение атома металла (рис. 27, первая стадия)

а) алкилирование – введение алкильной группы (рис. 27, вторая стадия)

б) ацилирование – введение ацильной группы RC(O)- (рис. 27, вторая стадия)

Иногда название реакции указывает на особенности перестройки молекулы, например, циклизация – образование цикла, дециклизация – раскрытие цикла (рис.15).

Крупный класс образуют реакции конденсации (лат . condensatio – уплотнение, сгущение), при которых происходит формирование новых связей С-С с одновременным образованием легко удаляемых неорганических или органических соединений. Конденсацию, сопровождаемую выделением воды, называют дегидратацией. Конденсационные процессы могут также проходить внутримолекулярно, то есть, в пределах одной молекулы (рис. 28).

Рис. 28. РЕАКЦИИ КОНДЕНСАЦИИ

В конденсации бензола (рис. 28) роль функциональных групп выполняют фрагменты С-Н.

Классификация органических реакций не имеет строгого характера, например, показанную на рис. 28 внутримолекулярную конденсацию малеиновой кислоты можно также отнести к реакциям циклизации, а конденсацию бензола – к дегидрированию.

Существуют внутримолекулярные реакции, несколько отличающиеся от конденсационных процессов, когда фрагмент (молекула) отщепляется в виде легко удаляемого соединения без очевидного участия функциональных групп. Такие реакции называют элиминированием (лат. eliminare – изгонять), при этом образуются новые связи (рис. 29).


Рис. 29. РЕАКЦИИ ЭЛИМИНИРОВАНИЯ

Возможны варианты, когда совместно реализуются несколько типов превращений, что показано далее на примере соединения, в котором при нагревании протекают разнотипные процессы. При термической конденсации слизевой кислоты (рис. 30) проходит внутримолекулярная дегидратация и последующее элиминирование СО 2 .


Рис. 30. ПРЕВРАЩЕНИЕ СЛИЗЕВОЙ КИСЛОТЫ (получаемой из желудевого сиропа) в пирослизевую кислоту, названную так потому, что получают ее нагреванием слизевой. Пирослизевая кислота представляет собой гетероциклическое соединение – фуран с присоединенной функциональной (карбоксильной) группой. В процессе реакции разрываются связи С-О, С-Н и образуются новые связи С-Н и С-С.

Существуют реакции, при которых происходит перестраивание молекулы без изменения состава (см . ИЗОМЕРИЗАЦИЯ ).

Методы исследования в органической химии. Современная органическая химия помимо элементного анализа использует многие физические методы исследования. Сложнейшие смеси веществ разделяют на составляющие компоненты с помощью хроматографии, основанной на перемещении растворов или паров веществ через слой сорбента. Инфракрасная спектроскопия – пропускание инфракрасных (тепловых) лучей через раствор или сквозь тонкий слой вещества – позволяет установить наличие в веществе определенных фрагментов молекулы, например, групп С 6 Н 5 , С=О, NH 2 и др.

Ультрафиолетовая спектроскопия, называемая также электронной, несет информацию об электронном состоянии молекулы, она чувствительна к присутствию в веществе кратных связей и ароматических фрагментов. Анализ кристаллических веществ с помощью лучей рентгеновского диапазона (рентгеноструктурный анализ) дает объемную картину расположения атомов в молекуле, подобную тем, что показаны на приведенных выше анимированных рисунках, иными словами, позволяет как бы увидеть строение молекулы своими глазами.

Спектральный метод – ядерный магнитный резонанс, основанный на резонансном взаимодействии магнитных моментов ядер с внешним магнитным полем, дает возможность различить атомы одного элемента, например, водорода, расположенные в различных фрагментах молекулы (в углеводородном скелете, в гидроксильной, карбоксильной или аминогруппе), а также определить их количественное соотношение. Подобный анализ возможен также для ядер С, N, F и др. Все эти современные физические методы привели к интенсивным исследованиям в органической химии – стало возможным быстро решать те задачи, на которые ранее уходили долгие годы.

Некоторые разделы органической химии выделились в крупные самостоятельные области, например, химия природных веществ, лекарственных препаратов, красителей, химия полимеров. В середине 20 в. химия элементоорганических соединений стала развиваться как самостоятельная дисциплина, которая изучает вещества, содержащие связь С-Э, где символ Э обозначает любой элемент(кроме углерода, водорода, кислорода, азота и галогенов). Велики успехи биохимии, изучающей синтез и превращения органических веществ, происходящие в живых организмах. Развитие всех этих областей основано на общих законах органической химии.

Современный промышленный органический синтез включат в себя широкий набор различных процессов – это, прежде всего, крупнотоннажные производства – переработка нефти, газа и получение моторных топлив, растворителей, теплоносителей, смазочных масел, кроме того, синтез полимеров, синтетических волокон, разнообразных смол для покрытий, клеев и эмалей. К малотоннажным производствам относят получение лекарственных препаратов, витаминов, красителей, пищевых добавок и душистых веществ.

Михаил Левицкий

ЛИТЕРАТУРА Каррер П. Курс органической химии , пер. с нем., ГНТИ Химлит, Л., 1962
Крам Д., Хэммонд Дж. Органическая химия , пер. с англ., Мир, М., 1964

Органическая химия - это наука об углеродсодержащих соединениях и путях их синтеза. Поскольку многообразие органических веществ и их превращений необычайно велико, изучение этого крупного раздела науки требует особого подхода.

Если у тебя возникает неуверенность в возможности успешного освоения предмета, не переживай! 🙂 Ниже следуют некоторые советы, которые помогут тебе рассеять эти страхи и добиться успеха!

  • Обобщающие схемы

Все химические превращения, которые тебе встречаются при изучении того или иного класса органических соединений заноси в сводные схемы. Ты их можешь начертить по своему вкусу. Эти схемы, в которых собраны основные реакции, будут служить тебе путеводителями, позволяющими легко найти способы превращения одних веществ в другие. Схемы можно повесить около твоего рабочего места, чтобы чаще бросались в глаза, так проще их запомнить. Можно составить одну большую схему, содержащую все классы органических соединений. Например, такие: или вот такую схему:

Стрелки нужно пронумеровать и ниже (под схемой) привести примеры реакций и условия. Можно несколько реакций, место заранее много оставляйте. Объем большой получится, но это очень вам поможет в решении заданий 32 ЕГэ по химии «Реакции, подтверждающие взаимосвязь органических соединений» (бывшее С3).

  • Карточки для повторения

При изучении органической химии необходимо выучить большое число химических реакций, придется запомнить и понять, как протекает множество превращений. Помочь Вам в этом могут специальные карточки.

Заведите пачку карточек размером примерно 8 X 12 см. На одной стороне карточки записывайте реагенты, а на другой - продукты реакции:

Эти карточки можно носить с собой и просматривать их по нескольку раз в день. Полезнее обращаться к карточкам несколько раз по 5 -10 мин, чем один раз, но за длительный промежуток времени.

Когда наберется много таких карточек, следует разделить их на две группы:

группа №1 — те, которые хорошо знаешь, их просматриваешь раз в 1-2 недели, и

группа №2 — те, которые вызывают затруднения, их просматриваешь каждый день, пока они не «перекачуют» к группу №1.

Этот метод можно также использовать и для изучения иностранного языка, на одной стороне карточке пишешь слово, на обороте его перевод, так можно быстро пополнить словарный запас. На некоторых языковых курсах такие карточки выдаются уже в готовом виде. Так что, это проверенный метод!

  • Сводная таблица

Эту таблицу нужно переписать или распечатать (после авторизации на сайте доступно копирование) , если реакция не характерна для данного класса соединения – то ставите минус, а если характерна, то плюсик и номер по порядку, а ниже таблицы пишите примеры, соответствующие нумерации. Это тоже очень хороший способ систематизировать знания по органике!

  • Постоянное повторение

Органическая химия, как и иностранный язык, - кумулятивная дисциплина. Последующий материал базируется на знании ранее пройденного. Поэтому возвращайтесь периодически к пройденным темам.

  • Модели молекул

Поскольку форма и геометрия молекул имеют большое значение в органической химии, обучающемуся неплохо иметь набор моделей молекул. Такие модели, которые можно подержать в руках, окажут помощь в изучении стереохимических особенностей молекул.

Помните, что внимание к новым словам и терминам так же важно в органической химии, как и в других дисциплинах. Имейте в виду, что чтение научной литературы всегда медленнее, чем чтение художест­венной. Не пытайтесь быстро все охватить. Чтобы хорошо разобраться в представленном материале, необходимо медленное, вдумчивое чтение. Можно читать дважды: первый раз для беглого ознакомления, второй — для более внимательного изучения.

Удачи! У вас все получится!

Если вы поступили в университет, но к этому времени так и не разобрались в этой нелегкой науке, мы готовы раскрыть вам несколько секретов и помочь изучить органическую химию с нуля (для "чайников"). Вам же остается только читать и внимать.

Основы органической химии

Органическая химия выделена в отдельный подвид благодаря тому, что объектом ее изучения является все, в составе чего есть углерод.

Органическая химия – раздел химии, который занимается изучением соединения углерода, структуру таких соединений, их свойства и методы соединения.

Как оказалось, углерод чаще всего образует соединения со следующими элементами - H, N, O, S, P. Кстати, эти элементы называются органогенами .

Органические соединения, количество которых сегодня достигает 20 млн, очень важны для полноценного существования всех живых организмов. Впрочем, никто и не сомневался, иначе человек просто закинул бы изучение этого непознанного в долгий ящик.

Цели, методы и теоретические представления органической химии представлены следующим:

  • Разделение ископаемого, животного или растительного сырья на отдельные вещества;
  • Очистка и синтез разных соединений;
  • Выявление структуры веществ;
  • Определение механики протекания химических реакций;
  • Нахождение зависимости между структурой и свойствами органических веществ.

Немного из истории органической химии

Вы можете не верить, но еще в далекой древности жители Рима и Египта понимали кое-что в химии.

Как мы знаем, они пользовались натуральными красителями. А нередко им приходилось использовать не готовый естественный краситель, а добывать его, вычленяя из цельного растения (например, содержащиеся в растениях ализарин и индиго).

Можем вспомнить и культуру употребления алкоголя. Секреты производства спиртных напитков известны в каждом народе. Причем многие древние народы знали рецепты приготовления «горячей воды» из крахмал- и сахарсодержащих продуктов.

Так продолжалось долгие, долгие годы, и только в 16-17 веках начались какие-то изменения, небольшие открытия.

В 18 веке некто Шееле научился выделять яблочную, винную, щавелевую, молочную, галловую и лимонную кислоту.

Тогда всем стало ясно, что продукты, которые удалось выделить из растительного или животного сырья, имели много общих черт. В то же время они сильно отличались от неорганических соединений. Поэтому служителям науки нужно было срочно выделить их в отдельный класс, так и появился термин «органическая химия».

Несмотря на то, что сама органическая химия как наука появилась лишь в 1828 году (именно тогда господину Вёлеру удалось выделить мочевину путем упаривания цианата аммония), в 1807 году Берцелиус ввел первый термин в номенклатуру в органической химии для чайников:

Раздел химии, который изучает вещества, полученные из организмов.

Следующий важный шаг в развитии органический химии – теория валентности, предложенная в 1857 году Кекуле и Купером, и теория химического строения господина Бутлерова от 1861 года. Уже тогда ученые стали обнаруживать, что углерод – четырехвалентен и способен образовывать цепи.

В общем, с эти самых пор наука регулярно испытывала потрясения и волнения благодаря новым теориям, открытиям цепочкам и соединениям, что позволяло так же активно развиваться органической химии.

Сама наука появилась благодаря тому, что научно-технический прогресс не в состоянии был стоять на месте. Он продолжал и продолжал шагать, требуя новых решений. И когда каменноугольной смолы в сфере промышленности перестало хватать, людям просто пришлось создать новый органический синтез, который со временем перерос в открытие невероятно важного вещества, которое и по сей день дороже золота – нефть. Кстати, именно благодаря органической химии на свет появилась ее «дочка» - поднаука, которая получила название «нефтехимия».

Но это уже совсем другая история, которую вы можете изучить сами. Далее мы предлагаем вам посмотреть научно-популярное видео про органическую химию для чайников:

Ну а если вам некогда и срочно нужна помощь профессионалов , вы всегда знаете, где их найти.

СИБИРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ

СПРАВОЧНИК СТУДЕНТА

по ОРГАНИЧЕСКОЙ ХИМИИ

для специальностей технического и экономического профилей

Составила: преподаватель

2012

Структура « СПРАВОЧНИКА СТУДЕНТА по ОРГАНИЧЕСКОЙ ХИМИИ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

СС по органической химии составлен для оказания помощи обучающимся в создании научной картины мира через химическое содержание с учетом межпредметных и внутрипредметных связей, логики учебного процесса.

В СС по органической химии представлено минимальное по объему, но функционально полное содержание для освоения государственного стандарта химического образования.

СС по органической химии выполняет две основные функции:

I. Информационная функция позволяет участникам образовательного процесса получить представление о содержании, структуре предмета, взаимосвязи понятий посредствам схем, таблиц и алгоритмов.

II. Организационно-планирующая функция предусматривает выделение этапов обучения, структурирование учебного материала, и создаёт представления о содержательном наполнении промежуточной и итоговой аттестации.

СС предполагает формирование системы знаний, умений и способов деятельности, развивает способность студентов работать со справочными материалами.

Наименование

Наименование

Хронологическая таблица «Развитие органической химии».

Химические свойства алкенов (этиленовых углеводородов).

Основные положения теории строения органических соединений

Химические свойства алкинов (ацетиленовых углеводородов).

Изомеры и гомологи.

Химические свойства аренов (ароматических углеводородов).

Значение ТСОС

Классификация углеводородов.

Генетическая связь органических веществ.

Гомологический ряд

АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ).

Взаимосвязь

«Строение - свойства - применение».

Гомологический ряд

РАДИКАЛЫОБРАЗОВАН-НЫЕ ОТ АЛКАНОВ.

Относительные молекулярные массы органических веществ

Словарь терминов по органической химии. Именные реакции.

Изомерия классов органических веществ.

Алгоритм решения задач.

Физические величины для решения задач.

Химические свойства алканов (предельных углеводородов).

Вывод формул соединений.

Примеры решения задач.

ХРОНОЛОГИЧЕСКАЯ ТАБЛИЦА «РАЗВИТИЕ ОРГАНИЧЕСКОЙ ХИМИИ»


Период/год. Кто?

Характер открытия

Древней-ший

Древний человек

Варить пищу, дубить кожи, изготавливать лекарства

Парацельс и др.

Изготовление более сложных по составу лекарств, изучение свойств веществ орг. происхождения, т. е. продуктов жизнедеятельности

XY-XYIII в. в.

Непрерывный процесс

Накопление знаний о различных веществах.

Главенство «ВИТАЛИСТИЧЕСКИХ ПРЕДСТАВЛЕНИЙ»

Взрыв научной мысли, детонатором которой служили потребности людей в красителях, одежде, пище.

Йёнс Якоб Берцелиус (шведский химик)

Термин «органическая химия»

Фридрих Вёлер (нем.)

Синтез щавелевой кислоты

Понятие

Органическая химия – это раздел химической науки, изучающая соединения углерода.

Фридрих Вёлер (нем.)

Синтез мочевины

Синтез анилина

Адольф Кульбе (нем.)

Синтез уксусной кислоты из углерода

Э. Франкланд

Понятие «соединительная система» - валентность

Пьер Бертло (фр.)

Синтезировал этиловый спирт гидратацией этилена.

Синтез жиров.

«Химия не нуждается в жизненной силе!»

Синтез сахаристого вещества

Основываясь на различные теории (Франкланда, Жерара, Кекуле, Купера) создал ТСОС

Учебник «Введение в полное изучение органической химии». Органическая химия – это раздел химии, изучающий углеводороды и их производные .

ОСНОВНЫЕ ПОЛОЖЕНИЯ

ТЕОРИИ СТРОЕНИЯ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

А. М. БУТЛЕРОВА

1. А. в М. соединены в определённой последовательности, согласно их валентности.

2. Свойства веществ зависят не только от качественного и количественного состава, но и от химического строения. Изомеры. Изомерия.

3. А. и группы А. взаимно влияют друг на друга.

4. По свойствам вещества можно определить строение, а по строению – свойства.

Изомеры и гомологи.

Качественный состав

Количествен­ный состав

Химическое строение

Химические свойства

Изомеры

одинаковый

одинаковый

различное

различные

Гомологи

одинаковый

различный

сходное

сходные

Значение ТСОС

1. Объяснила строение М. известных веществ и их свойства.

2. Дала возможность предвидеть существование неизвестных веществ и найти пути их синтеза.

3. Объяснить многообразие органических веществ.

Классификация углеводородов.

https://pandia.ru/text/78/431/images/image003_147.gif" width="708" height="984 src=">

Гомологический ряд

АЛКАНЫ (ПРЕДЕЛЬНЫЕ УГЛЕВОДОРОДЫ)

Формула

Название

МЕТАН

С2Н6

ЭТАН

С3Н8

ПРОПАН

БУТАН

ПЕНТАН

ГЕКСАН

ГЕПТАН

ОКТАН

НОНАН

С10Н22

ДЕКАН

Гомологический ряд

РАДИКАЛЫОБРАЗОВАННЫХ ОТ АЛКАНОВ

Формула

Название

МЕТИЛ

С2Н5

ЭТИЛ

С3Н7

ПРОПИЛ

БУТИЛ

ПЕНТИЛ

ГЕКСИЛ

ГЕПТИЛ

ОКТИЛ

НОНИЛ

С10Н21

ДЕЦИЛ

Общие сведения об углеводородах.

DIV_ADBLOCK31">


Химические свойства алканов

(предельных углеводородов).

https://pandia.ru/text/78/431/images/image007_73.gif" width="610" height="835 src=">

Химические свойства алкинов

(ацетиленовых углеводородов).

https://pandia.ru/text/78/431/images/image009_68.gif" width="646" height="927 src=">

Генетическая связь между углеводородами.

https://pandia.ru/text/78/431/images/image011_36.jpg" width="696" height="919 src=">


Взаимосвязь «Строение - свойства - применение».

Способы

получения

Строение

Состав

Нахождение

в природе

Свойства

Применение

МОЛЕКУЛЯРНЫЕ МАССЫ НЕКОТЫРЫХ ОРГАНИЧЕСКИХВЕЩЕСТВ.

Название

Алканы

Галоген производные

Спирты и Фенолы

Простые эфиры

Альдегиды

Карбоновые кислоты

Нитросоединения


Алгоритм решения задач

1. Изучите внимательно условия задачи: определите, с какими величинами предстоит проводить вычисления, обозначьте их буквами, установите единицы их измерения, числовые значения, определите, какая величина является искомой.

2. Запишите данные задачи в виде кратких условий.

3. Если в условиях задачи идет речь о взаимодействии веществ, запишите уравнение реакции (реакций) и уравняйте его (их) коэффициентами.

4. Выясните количественные соотношения между данными задачи и искомой величиной. Для этого расчлените свои действия на этапы, начав с вопроса задачи, выяснения закономерности, с помощью которой можно определить искомую величину на последнем этапе вычислений. Если в исходных данных не хватает каких-либо величин, подумайте, как их можно вычислить, т. е. определите предварительные этапы расчета. Этих этапов может быть несколько.

5. Определите последовательность всех этапов решения задачи, запишите необходимые формулы расчетов.

6. Подставьте соответствующие числовые значения величин, проверьте их размерности, произведите вычисления.


Вывод формул соединений.

Этот вид расчетов чрезвычайно важен для химической практики, т. к. позволяет на основании экспериментальных данных определить формулу вещества (простейшую и молекулярную).

На основании данных качественного и количественного анализов химик находит сначала соотношение атомов в молекуле (или другой структурной единице вещества), т. е. его простейшую формулу.
Например, анализ показал, что вещество является углеводородом
CxHy, в котором массовые доли углерода и водорода соответственно равны 0,8 и 0,2 (80% и 20%). Чтобы определить соотношение атомов элементов, достаточно определить их количества вещества (число молей): Целые числа (1 и 3) получены делением числа 0,2 на число 0,0666. Число 0,0666 примем за 1. Число 0,2 в 3 раза больше, чем число 0,0666. Таким образом, CH3 является простейшей формулой данного вещества. Соотношению атомов C и H, равному 1:3, соответствует бесчисленное количество формул: C2H6, C3H9, C4H12 и т. д., но из этого ряда только одна формула является молекулярной для данного вещества, т. е. отражающей истинное количество атомов в его молекуле. Чтобы вычислить молекулярную формулу, кроме количественного состава вещества, необходимо знать его молекулярную массу.

Для определения этой величины часто используется значение относительной плотности газа D. Так, для вышеприведенного случая DH2 = 15. Тогда M(CxHy) = 15µM(H2) = 152 г/моль = 30 г/моль.
Поскольку M(CH3) = 15, то для соответствия с истинной молекулярной массой необходимо удвоить индексы в формуле. Следовательно, молекулярная формула вещества: C2H6 .

Определение формулы вещества зависит от точности математических вычислений.

При нахождении значения n элемента следует учитывать хотя бы два знака после запятой и аккуратно производить округление чисел.

Например, 0,8878 ≈ 0,89, но не 1. Соотношение атомов в молекуле не всегда определяется простым делением полученных чисел на меньшее число.

по массовым долям элементов.

Задача 1. Установите формулу вещества, которое состоит из углерода (w=25%) и алюминия (w=75%).

Разделим 2,08 на 2. Полученное число 1,04 не укладывается целое число раз в числе 2,78 (2,78:1,04=2,67:1).

Теперь разделим 2,08 на 3.

При этом получается число 0,69, которое укладывается ровно 4 раза в числе 2,78 и 3 раза в числе 2,08.

Следовательно, индексы x и y в формуле вещества AlxCy равны 4 и 3, соответственно.

Ответ: Al4C3 (карбид алюминия).

Алгоритм нахождения химической формулы вещества

по его плотности и массовым долям элементов.

Более сложным вариантом задач на вывод формул соединений является случай, когда состав вещества задается через продукты сгорания этих.

Задача 2. При сжигании углеводорода массой 8,316 г образовалось 26,4 г CO2. Плотность вещества при нормальных условиях равна 1,875 г/мл. Найдите его молекулярную формулу.

Общие сведения об углеводородах.

(продолжение)

https://pandia.ru/text/78/431/images/image025_32.gif" width="696" height="983">

Природные источники углеводородов.

Нефть – ископаемое, жидкое горючее, сложная смесь органических веществ: предельных углеводородов, парафинов, нафтенов, ароматических и др. В состав нефти обычно входят кислород-, серо - и азотсодержащие вещества.

Маслянистая жидкость с характерным запахом, темного цвета, легче воды. Важнейший источник топлива, смазочных масел и др. нефтепродуктов. Основной (первичный) процесс переработки - перегонка, в результате которой получают бензин, лигроин, керосин, соляровые масла, мазут, вазелин , парафин, гудрон. Вторичные процессы переработки (крекинг, пиролиз ) позволяют получать дополнительное жидкое топливо, ароматические углеводороды (бензол, толуол и пр.) и др.

Нефтяные газы – смесь различных газообразных углеводородов, растворенных в нефти; они выделяются в процессе добычи и переработки. Применяются как топливо и химическое сырье.

Бензин – бесцветная или желтоватая жидкость, состоит из смеси углеводородов (С5 – С11 ). Применяется как моторное топливо, растворитель и др.

Лигроин – прозрачная желтоватая жидкость, смесь жидких углеводородов. Применяется как дизельное горючее, растворитель, гидравлическая жидкость и др.

Керосин – прозрачная, бесцветная или желтоватая жидкость с голубым отливом. Применяют как топливо для реактивных двигателей, для бытовых нужд и др.

Соляр – желтоватая жидкость. Применяется для производства смазочных масел.

Мазут – тяжелое нефтяное топливо, смесь парафинов. Применяют в производстве масел, топочных мазутов, битума , для переработки на легкое моторное топливо.

Бензол – бесцветная подвижная жидкость с характерным запахом. Применяют для синтеза органических соединений, как сырье для получения пластмасс, как растворитель, для производства взрывчатых веществ, в анилинокрасочной промышленности

Толуол – аналог бензола. Применяют в производстве капролактама, ВВ, бензойной кислоты, сахарина, как растворитель, в анилинокрасочной промышленности и др.

Смазочные масла – Применяют в различных областях техники для уменьшения трения мех. частей, для защиты металлов от коррозии, как смазочноохлаждающую жидкость.

Гудрон – черная смолистая масса. Применяется для смазки и др.

Вазелин – смесь минерального масла и парафинов. Применяют в электротехнике , для смазки подшипников, для защиты металлов от коррозии и др.

Парафин – смесь твердых насыщенных углеводородов. Применяют как электроизолятор, в хим. промышленности - для получения высших кислот и спиртов и др.

Пластмасса – материалы на основе высокомолекулярных соединении. Применяют для производства различных технических изделий и предметов быта.

Асфальтовая руда – смесь окисленных углеводородов. Применяется для изготовления лаков, в электротехнике, для асфальтирования улиц.

Горный воск – минерал из группы нефтяных битумов. Применяют как электроизолятор, для приготовления различных смазок и мазей и др.

Искусственный воск – очищенный горный воск.

Каменный уголь – твердое горючее ископаемое растительного происхождения черного или черно-серого цвета. Содержит 75–97% углерода. Применяют как топливо и как сырье для химической промышленности .

Кокс – спекшийся твердый продукт, образующийся при нагревании некоторых углей в коксовых печах до 900–1050° С. Применяется в доменных печах.

Коксовый газ – газообразные продукты коксования ископаемых углей. Состоит из СН4, Н2, СО и др., содержит также негорючие примеси. Используется как высококалорийное топливо.

Аммиачная вода – жидкий продукт сухой перегонки каменного угля. Применяется для получения солей аммония (азотные удобрения), нашатырного спирта и др.

Смола каменноугольная – густая темная жидкость с характерным запахом, продукт сухой перегонки каменного угля. Применяется как сырье для хим. промышленности.

Бензол – бесцветная подвижная жидкость с характерным запахом, один из продуктов каменноугольной смолы. Применяют для синтеза органических соединений, как ВВ, как сырье для получения пластмасс, как краситель, как растворитель и др.

Нафталин – твердое кристаллическое вещество с характерным запахом, один из продуктов каменноугольной смолы. Производные нафталина применяют для получения красителей и взрывчатых веществ и др.

Лекарства - коксохимическая промышленность дает целый ряд лекарственных препаратов (карболовая кислота, фенацитин, салициловая кислота, сахарин и др.).

Пек – твердая (вязкая) масса черного цвета, остаток от перегонки каменноугольной смолы. Применяют как гидроизолятор, для производства топливных брикетов и др.

Толуол – аналог бензола, один из продуктов каменноугольной смолы. Применяют для производства ВВ, капролактама, бензойной кислоты, сахарина, как краситель и др.

Красители – одни из продуктов коксохимического производства, получаются в результате переработки бензола, нафталина и фенола. Применяют в народном хозяйстве.

Анилин – бесцветная маслянистая жидкость, ядовит. Применяется для получения различных органических веществ, анилиновых красок, различных азокрасителей, синтеза лекаре венных препаратов и др.

Сахарин – твердое белое кристаллическое вещество сладкого вкуса, получается из толуола. Применяется вместо сахара при заболевании диабетом и др.

ВВ – производные каменного угля, получаемые в процессе сухой перегонки. Применяются в военной промышленности, горном деле и других отраслях народного хозяйства.

Фенол – кристаллическое вещество белого или розового цвета с характерным сильным запахом. Применяется в производстве фенолформальдегидных пластмасс, синтетического волокна капрона, красителей, лекарственных препаратов и др.

Пластмасса – материалы на основе высокомолекулярных соединений. Применяют для производства различных технических изделий и предметов быта.