Ароматические углеводороды (арены). Конденсированные бензоидные углеводороды Ароматические углеводороды производные химические свойства

Это циклические углеводороды с тремя двойными сопряженными связями в цикле.

Бензол С 6 Н 6 – родоначальник ароматических углеводородов. Впервые выделен Фарадеем в 1825г из светильного газа.

Каждый из шести атомов углерода в его молекуле находится в состоянии sp 2 -гибридизации и связан с двумя соседними атомами углерода и атомом водорода тремя σ-связями. Валентные углы между каждой парой π-связей равны 120 0 .

Таким образом, скелет σ-связей представляет собой правильный шестиугольник, в котором все атомы углерода и все σ-связи С–С и С–Н лежат в одной плоскости.

р-Электроны всех атомов углерода образуют единое циклическое π-электронное облако, сосредоточенное над и под плоскостью кольца.

Все связи С–С в бензоле равноценны, их длина равна 0,140 нм, что соответствует промежуточному значению между одинарной и двойной.

Это означает, что в молекуле бензола между углеродными атомами нет чисто простых и двойных связей (как в формуле, предложенной в 1865 г. немецким химиком Ф.Кекуле), а все они выровнены (делокализованы).

Общая формула гомологического ряда бензола C n H 2n-6 (n ≥ 6).

Если радикалов два или более, их положение указывается номерами атомов углерода в кольце, с которыми они связаны. Кольцо нумерют так, чтобы номера радикалов были наименьшими.

Для дизамещенных бензолов

R-C 6 H 4 -R"

используется также другой способ построения названий:

орто - (о -) заместители у соседних атомов углерода кольца, 1,2-;
мета - (м -) заместители через один атом углерода (1,3-);
пара -(п -) заместители на противоположных сторонах кольца(1,4-).

Изомерия у аренов.

Определяется числом заместителей, их расположением в бензольном кольце и возможностью изомерии углеродного скелета в заместителях, содержащих более трёх атомов углерода.

Для ароматического углеводорода С 8 Н 10 существуют 4 изомера: орто-, мета- и пара-ксилолы и этилбензол.

ПОЛУЧЕНИЕ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ

Дегидрирование циклоалканов

2. Дегидроциклизация (дегидрирование и циклизация) алканов в присутствии катализатора

3.Тримеризация ацетилена над активированным углем (реакция Зелинского ):

4.Алкилирование бензола галогеналканами в присутствии безводного хлорида алюминия или алкенами :

ФИЗИЧЕСКИЕ СВОЙСТВА.

Бензол и его ближайшие гомологи – бесцветные жидкости с характерным запахом, с плотностью менее 1 г/мл. Огнеопасны. Нерастворимы в воде, но хорошо растворимы в неполярных растворителях. Бензол и толуол ядовиты (поражают почки, печень, костный мозг, кровь).

Высшие арены – твердые вещества.

ХИМИЧЕСКИЕ СВОЙСТВА.

Из-за наличия делокализованой -системы арены мало характерны реакции присоединения или окисления, которые ведут к нарушению ароматичности. Для них наиболее характерны реакции электрофильного замещения атомов водорода, связанных с циклом- S Е .

1. РЕАКЦИИ ПРИСОЕДИНЕНИЯ К АРЕНАМ

В реакции присоединения, приводящие к разрушению ароматической структуры бензольного кольца, арены могут вступать с большим трудом.

а. Гидрирование . Присоединение водорода к бензолу и его гомологам происходит при повышенной температуре и давлении в присутствии металлических катализаторов.

б. Радикальное хлорирование . При радикальном хлорировании бензола получается гексахлорциклогексан - "гексахлоран" (средство борьбы с вредными насекомыми).

2. РЕАКЦИИ РАДИКАЛЬНОГО ЗАМЕЩЕНИЯ АТОМОВ ВОДОРОДА В БОКОВОЙ ЦЕПИ:

В случае гомологов бензола при действии хлора на свету или при нагревании происходит реакция радикального замещения в боковой цепи:

3. Реакции окисления аренов

Бензол не окисляется даже под действием сильных окислителей (KMnO 4 , K 2 Cr 2 O 7 и т.п.). Поэтому он часто используется как инертный растворитель при проведении реакций окисления других органических соединений.

В отличие от бензола его гомологи окисляются довольно легко. При действии раствора KMnO 4 в кислой среде и нагревании в гомологах бензола окислению подвергаются только боковые цепи, при этом от боковой цепи остаётся карбоксильная группа, а остальное – переходит в углекислый газ:

5С 6 Н 5 -СН 3 +6КМnO 4 +9H 2 SO 4 à5C 6 H 5 -COOH +6MnSO 4 +3K 2 SO 4 +14H 2 O

5С 6 Н 5 -CH 2 -CH 3 +12КМnO 4 +18H 2 SO 4 à5C 6 H 5 -COOH +5СО 2 +12MnSO 4 +

6K 2 SO 4 +28H 2 O

Если окисление идёт в нейтральном растворе при нагревании, то образуется соль бензойной кислоты и карбонат калия:

С 6 Н 5 -СН 2 -СН 3 +4KMnO 4 àC 6 H 5 – COO K+K 2 CO 3 +4MnO 2 +KOH+2H 2 O

4.РЕАКЦИИ ЗАМЕЩЕНИЯ В БЕНЗОЛЬНОМ КОЛЬЦЕ

Галогенирование

Замещение атома водорода в бензольном кольце на галоген происходит в присутствии катализаторов AlCl 3 , AlBr 3 , FeCl 3 и т.п.:

Нитрование

Бензол реагирует с нитрующей смесью (смесью концентрированных азотной и серной кислот):

Алкилирование

Замещение атома водорода в бензольном кольце на алкильную группу(алкилирование ) происходит под действием алкилгалогенидов в присутствии катализаторов AlCl 3 , FeBr 3 или алкенов в присутствии фосфорной кислоты:

Лекция 16

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ
Схема лекции.

1. Полициклические ароматические углеводороды с изолированными циклами

1.1 Группа бифенила

1.2. Полифенилметаны

2. Конденсированные бензоидные углеводороды

2.1 Нафталин

2.2. Антрацен, фенантрен
1. Полициклические ароматические углеводороды с изолированными циклами

Различают две группы полициклических ароматических углеводородов (аренов) с несколькими бензольными кольцами.

1. Углеводороды с изолированными кольцами. Сюда относятся бифенил и ди- и трифенилметаны.

2. Углеводороды с конденсированными кольцами или бензоидные углеводороды. Сюда относятся нафталин , антрацен и фенантрен.

1.1. Группа бифенила

Определение: Соединения ароматического ряда, в которых два (или несколько) кольца (колец) соединены друг с другом простой связью – называются полициклическими ароматическими углеводородами с изолированными циклами.

Самым простым соединением из ароматических углеводородов с изолированными циклами является бифенил. Положения заместителей в формуле бифенила обозначаются цифрами. В одном кольце цифры не маркируются: 1, 2 ….. Во втором кольце цифры маркируются штрихом 1, 2 и т.д:
Схема 1.
Бифенил - кристаллическое вещество с Т пл. 70 0 С, Т кип. 254 0 С, имеет широкое применение благодаря термической и химической стойкости. Применяется в промышленности как высокотемпературный теплоноситель. В промышленности бифенил производят пиролизом бензола:
Схема 2.
Лабораторным методом получения является действие натрия или меди на йодбензол
Схема 3.
Реакция протекает особенно гладко при наличии в арилгалогенидах электроноакцепторных заместителей, повышающих подвижность галогена в ядре:

Схема 4.

Важнейшим производным бифенила является диамин бензидин. Обычно его получают восстановлением нитробензола до гидразобензола и изомеризацией последнего под влиянием кислот:
Схема 5.

Бензидин является исходным веществом для получения многих субстантивных (прямых) красителей. Наличие двух аминогрупп, способных диазотироваться , позволяет получать бис-азокрасители, обладающие глубокой окраской. Примером красителя, получаемого из бензидина, является индикатор конго красный:
Схема 6.
В кристаллическом состоянии оба бензольных кольца бифенила лежат в одной плоскости. В растворе и в газообразном состоянии угол между плоскостями колец составляет 45 0 . Выход бензольных колец из плоскости объясняется пространственным взаимодействием атомов водорода в положения 2, 2 и 6, 6:
Схема 7.
Если в орто-положениях находятся крупные заместители , то вращение относительно связи С-С становится затруднительным. Если заместители неодинаковые, то соответствующие производные могут быть разделены на оптические изомеры. Такая форма пространственной изомерии названа поворотной оптической изомерией или атропоизомерией.

Схема 8.
Бифенил значительно активнее по сравнению с бензолом участвует в реакциях электрофильного ароматического замещения. Бромирование бифенила эквимольным количеством брома приводит к образованию 4-бромбифенила. Избыток брома приводит к образованию 4,4 ` -дибромбифенила:
Схема 9.
Аналогично протекают реакции нитрования бифенила, ацилирование по Фриделю-Крафтсу и другие реакции электрофильного ароматического замещения.

1.2. Полифенилметаны

Определение: Соединения ароматического ряда, в которых от двух до четырех бензольных колец соединены с одним атомом углерода , находящимся в состоянии sp 3 -гибридизации.

Основоположником гомологического ряда полифенилметана является толуол, следующее соединение дифенилметан:

Схема 10.
Ди- и трифенилметан получают с использованием бензола по реакции Фриделя-Крафтса двумя методами:

1. Из хлористого метилена и хлороформа:
Схема 11.
2. Из хлористого бензила и хлористого бензилидена:
Схема 12. .
Дифенилметан – кристаллическое вещество с Т пл. 26-27 0 С, обладает запахом апельсина.

При окислении дифенилметана образуется бензофенон:
Схема 13.
Трифенилметан - кристаллическое вещество с Т пл. 92.5 0 С. С бензолом дает кристаллическое молекулярное соединение Т пл. 78 0 С. Трифенилметан легко окисляется до трифенилкарбинола. Водородный атом в его молекуле легко замещается металлами и галогенами. В свою очередь трифенилкарбинол при действии хлористого водорода трифенилхлорметан. Трифенилхлорметан при восстановлении образует трифенилметан, а при гидролизе – трифенилкарбинол:
Схема 14. .
Структура трифенилметана составляет основу так называемых красителей трифенилметанового ряда. Аминотрифенилметаны – бесцветные вещества, их называют лейкосоединениями (от греческого leukos – белый, бесцветный). При окислении в кислой среде образуют окрашенные соли. В этих солях носителем окраски (хромофором) является сопряженный ион с положительным зарядом , распределенным между атомами углерода и азота. Наиболее ярким представителем этой группы является малахитовый зеленый. Его получают по реакции Фриделя-Крафтса:
Схема 15.
При окислении лейкосоединения образуется система сопряженных связей через бензольное кольцо между атомом азота и углеродом трифенилметановой системы, перешедшим в состояние sp 2 -гибридизации. Такая структура называется хиноидной. Наличие хиноидной структуры обеспечивает появление глубокой интенсивной окраски.

К группе трифенилметановых красителей относится широко применяемый индикатор фенолфталеин. Получают по реакции фенола и фталевого ангидрида (ангидрид фталевой кислоты) в присутствии серной кислоты:

Схема 16.
2. Конденсированные бензоидные углеводороды
Углеводороды, содержащие два или более бензольных кольца, имеющих два общих атома углерода, называются конденсированными бензоидными углеводородами.
2.1. Нафталин
Простейшим из конденсированных бензоидных углеводородов является нафталин:
Схема 17.
Положения 1,4,5 и 8 обозначаются «α», положения 2, 3,6,7 обозначаются «β». Соответственно для нафталина возможно существование двух однозамещенных , которые носят название 1(α)- и 2(β)-производных, и десяти двухзамещенных изомеров, например:
Схема 18.
Способы получения.

Основную массу нафталина получают из каменноугольной смолы.

В лабораторных условиях нафталин можно получить пропуская пары бензола и ацетилена над древесным углем:
Схема 19.
Дегидроциклизацией над платиной гомологов бензола с боковой цепью из четырех и более атомов углерода:
Схема 20.

По реакции диенового синтеза 1,3-бутадиена с п -бензохиноном:
Схема 21.
Удобным лабораторным способом получения нафталина и его производных является метод, основанный на реакции Фриделя-Крафтса:

Схема 22.
Нафталин кристаллическое вещество с Т пл. 80 0 С, отличающийся большой летучестью.

Нафталин вступает в реакции электрофильного замещения легче, чем бензол. При этом первый заместитель почти всегда становиться в α-положение, так как в этом случае образуется энергетически более выгодный σ-комплекс, чем при замещении в β-положение. В первом случае σ-комплекс стабилизируется перераспределением электронной плотности без нарушения ароматичности второго кольца , во втором случае такая стабилизация не возможна:
Схема 23.
Ряд реакций электрофильного замещения в нафталине:
Схема 24.

Вступление электрофильного агента в β-положение наблюдается реже. Как правило это происходит в специфических условиях. В частности, сульфирование нафталина при 60 0 С протекает как кинетически контролируемый процесс, с преимущественным образованием 1-нафталинсульфокислоты. Сульфирование нафталина при 160 0 С протекает как термодинамически контролируемый процесс и приводит к образованию 2-нафталинсульфокислоты:

Схема 25.
Место вступления второго заместителя в нафталиновую систему определяется:

1. ориентационным влиянием уже имеющегося заместителя;

2. Различиями в реакционной способности α и β-положения.

При этом выполняются следующие условия:

1. Если в одном из колец нафталина имеется заместитель I рода, то новый заместитель вступает в это же кольцо. Заместитель I рода в 1(α)-проложении направляет второй заместитель , преимущественно в 4(пара )-положение. Изомер со вторым заместителем во 2(орто )-положении образуется в незначительных количествах, например:
Схема 26.
Электроноакцепторный заместители, находящиеся в молекуле нафталина, направляют атаку в другое кольцо в 5-е и 8-е положения:

Схема 27.

Схема 28.

Окисление нафталина кислородом воздуха с использованием пентаоксида ванадия в качестве катализатора приводит к образованию фталевого ангидрида:

Схема 29.

Нафталин может быть восстановлен действием различных восстановителей с присоединением 1, 2 или 5-ти молей водорода:
Схема 30.
2.2. Антрацен, фенантрен

Наращиванием еще одного кольца из нафталина можно получить два изомерных углеводорода – антрацена и фенантрена:
Схема 31. .
Положения 1, 4, 5 и 8 обозначаются «α», положения 2, 3, 6 и 7 обозначаются «β», положения 9 и 10 обозначаются «γ» или «мезо» - среднее положение.
Способы получения.

Основную массу антрацена получают из каменноугольной смолы.

В лабораторных условиях антрацена получают по реакции Фриделя-Крафтса из бензола либо с тетрабромэтаном:
Схема 32.
либо по реакции с фталевым ангидридом:

Схема 33.

В результате первой стадии реакции получают антрахинон , который легко восстанавливается до антрацена, например, боргидридом натрия.

Также используется реакция Фиттига, по которой молекула антрацена получается из двух молекул орто -бромбензилбромида:
Схема 34.
Свойства:

Антрацен – кристаллическое вещество с Т пл. 213 0 С. Все три бензольные кольца антрацена лежат в одной плоскости.

Антрацен легко присоединяет в положения 9 и 10 водород, бром и малеиновый ангидрид:
Схема 35.
Продукт присоединения брома легко теряет бромистый водород с образованием 9-бромантрацена.

Под действием окислителей антрацен легко окисляется в антрахинон:
Схема 36.
Фенантрен, также как и антрацен входит в состав каменноугольной смолы.

Также как и антрацен фенантрен присоединяет водород и бром в 9 и 10-положения:
Схема 37.
Под действием окислителей фенантрен легко окисляется в фенантренхинон, который далее окисляется до 2,2`-бифеновой кислоты:
Схема 36.

Демонстрационный материал к лекции

Схема 1. Структурная формула бифенила и порядок обозначения положения заместителей в молекуле бифенила.

Схема 2. Схема синтеза бифенила пиролизом бензола.

Схема 3. Схема синтеза бифенила из йодбензола.

Схема 4. Схема синтеза бифенила по реакции Ульмана.

Схема 5. Схема синтеза бензидина.


Схема 6. Индикатор конго красный.

Схема 7. Схема стерических взаимодействий атомов водорода в орто- и орто -положениях.


Схема 8. Поворотные оптические изомеры.

Схема 9. Схема реакции электрофильного замещения.

Следующее соединение дифенилметан:

Схема 10. Полифенилметаны.

Схема 11. Схема синтеза ди- и трифенилметана хлористого метилена и хлороформа.

Схема 12. Схема синтеза ди- и трифенилметана хлористого бензила и хлористого бензилидена.

Схема 13. Схема окисления дифенилметана.

Схема 14. Реакции с участием производных трифенилметана.


Схема 15. Схема синтеза красителя малахитовый зеленый.

Схема 16. Схема синтеза индикатора фенолфталеин.

Схема 17. Структура молекулы нафталина и обозначение положений.

Схема 18. Производные нафталина.
Способы получения.

ПОЛИЦИКЛИЧЕСКИЕ АРОМАТИЧЕСКИЕ УГЛЕВОДОРОДЫ С ИЗОЛИРОВАННЫМИ ЦИКЛАМИ

Ароматические углеводороды с несколькими бензольными циклами делятся на:

1. Углеводороды с неконденсированными циклами. Сюда относятся бифенил и ди- и трифенилметаны.

2. Углеводороды с конденсированными циклами. Сюда относятся нафталин, антрацен и фенантрен.

Группа бифенила

Определение: Соединения ароматического ряда, в которых два (или несколько) кольца (колец) соединены друг с другом простой связью – называются полициклическими ароматическими углеводородами с изолированными циклами.

В качестве примера рассматривается бифенил:

В промышленности бифенил производят пиролизом бензола:

Лабораторным методом получения является действие натрия или меди на йодбензол или при наличии в арилгалогенидах электроноакцепторных заместителей, повышающих подвижность галогена в ядре:

Бифенил – кристаллическое вещество с Т пл. 70 0 С, Т кип. 254 0 С. Термодинамически устойчив. Применяется в промышленности как высокотемпературный теплоноситель.

Бифенил значительно активнее по сравнению с бензолом участвует в реакциях электрофильного ароматического замещения. Бромирование бифенила эквимольным количеством брома приводит к образованию 4-бромбифенила. Избыток брома приводит к образованию 4,4 ` -дибромбифенила:

Аналогично протекают реакции нитрования бифенила, ацелирование по Фриделю-Крафтсу и другие реакции электрофильного ароматического замещения.

Полифенилметаны

Определение: Соединения ароматического ряда, в которых от двух до четырех бензольных колец соединены с одним атомом углерода, находящимся в состоянии sp 3 -гибридизации.

Основоположником гомологического ряда полифенилметана является толуол, следующее соединение дифенилметан:

Ди- и трифенилметан получают с использованием бензола по реакции Фриделя-Крафтса двумя методами:

1. Из хлористого метилена и хлороформа:

2. Из хлористого бензила и хлористого бензилидена:

Дифенилметан – кристаллическое вещество с Т пл. 26-27 0 С, обладает запахом апельсина.

При окислении дифенилметана образуется бензофенон:

Структура трифенилметана составляет основу так называемых красителей трифенилметанового ряда:

1. Малахитовый зеленый (зеленка) получают по реакции Фриделя-Крафтса:

2. Фенолфталеин.

Получают по реакции фенола и фталевого ангидрида (ангидрид фталевой кислоты) в присутствии серной кислоты:

КОНДЕНСИРОВАННЫЕ БЕНЗОИДНЫЕ УГЛЕВОДОРОДЫ

Углеводороды, содержащие два или более бензольных кольца, имеющих два общих атома углерода, называются конденсированными бензоидными углеводородами.

Нафталин

Простейшим из конденсированных бензоидных углеводородов является нафталин:

Положения 1,4,5 и 8 обозначаются «α», положения 2, 3,6,7 обозначаются «β».

Способы получения.

Основную массу нафталина получают из каменноугольной смолы.

В лабораторных условиях нафталин можно получить пропуская пары бензола и ацетилена над древесным углем:

Дегидроциклизацией над платиной гомологов бензола с боковой цепью из четырех и более атомов углерода:

По реакции диенового синтеза 1,3-бутадиена с п -бензохиноном:

Нафталин кристаллическое вещество с Т пл. 80 0 С, отличающийся большой летучестью.

Нафталин вступает в реакции электрофильного замещения легче, чем бензол. При этом первый заместитель почти всегда становиться в α-положение:

Вступление электрофильного агента в β-положение наблюдается реже. Как правило это происходит в специфических условиях. В частности, сульфирование нафталина при 60 0 С протекает как кинетически контролируемый процесс с преимущественным образованием 1-нафталинсульфокислоты. Сульфирование нафталина при 160 0 С протекает как термодинамически контролируемый процесс и приводит к образованию 2-нафталинсульфокислоты:

При введении второго заместителя в молекулу нафталина ориентация определяется природой уже имеющегося в ней заместителя. Электронодонорные заместители, находящиеся в молекуле нафталина, направляют атаку в то же кольцо во 2-е и 4-е положения.

С.Ю. Елисеев

Понятие ароматических углеводородов, их применение, физико-химические и пожаровзрывоопасные свойства.

Современное представление о строении молекулы бензола. Гомологический ряд бензола, номенклатура, изомерия. Токсичность аренов.

Основные химические реакции:

замещения (галогенирование, нитрование, сульфирование, алкилирование)

присоединения (водорода и галогенов);

окисления (неполное окисление, особенности процесса горения, склонность к самовозгоранию при контакте с сильными окислителями);

Правила замещения в бензольном кольце. Заместители первого и второго ряда.

Промышленные методы получения ароматических углеводородов.

Краткая характеристика основных ароматических углеводородов: толуола, бензола, ксилола, этилбензола, изопропилбензола, стирола и т.д.

Нитросоединения ароматического ряда, физико-химические и пожароопасные свойства нитробензола, толуола. Реакции их получения.

Ароматические амины: номенклатура, изомерия, способы получения, отдельные представители (анилин, дифениламин, диметиланилин).

Ароматические углеводороды (арены)

Ароматическими соединениями обычно называют карбоциклические соединения, в молекулах которых имеется особая циклическая группировка из шести углеродных атомов – бензольное ядро. Простейшим веществом, содержащим такую группировку, является углеводород бензол; все остальные ароматические соединения этого типа рассматривают как производные бензола.

Благодаря наличию в ароматических соединениях бензольного ядра они по некоторым свойствам значительно отличаются от предельных и непредельных алициклических соединений, а также и от соединений с открытой цепью. Отличительные свойства ароматических веществ, обусловленные наличием в них бензольного ядра, обычно называют ароматическими свойствами, а бензольное ядро – соответственно ароматическим ядром.

Следует отметить, что само название “ароматические соединения” теперь уже не имеет своего первоначального прямого значения. Так были названы первые изученные производные бензола, потому что они обладали ароматом или же были выделены из природных ароматических веществ. В настоящее же время к ароматическим соединениям относят многие вещества, обладающие и неприятными запахами или совсем не пахнущие, если в его молекуле содержится плоское кольцо с (4n + 2) обобщенными электронами, где n может принимать значения 0, 1, 2, 3 и т.д., - правило Хюккеля.

Ароматические углеводороды ряда бензола.

Первый представитель ароматических углеводородов – бензол – имеет состав C6H6 . Это вещество было открыто М.Фарадеем в 1825 г. в жидкости, образующейся при сжатии или охлаждении т.н. светильного газа, который получается при сухой перегонке каменного угля. Впоследствии бензол обнаружили (А.Гофман, 1845г.) в другом продукте сухой перегонки каменного угля – в каменноугольной смоле. Он оказался весьма ценным веществом и нашел широкое применение. Затем было установлено, что очень многие органические соединения являются производными бензола.

Строение бензола.

Долгое время оставался неясным вопрос о химической природе и о строении бензола. Казалось бы, что он представляет собой сильно непредельное соединение. Ведь его состав C6H6 по соотношению атомов углерода и водорода отвечает формуле CnH2n-6, тогда как соответствующий по числу углеродных атомов предельный углеводород гексан имеет состав C6H14 и отвечает формуле CnH2n+2. Однако бензол не дает характерных для непредельных соединений реакций; он, например, не обеспечивает бромной воды и раствора KMnO4, т.е. в обычных условиях не склонен к реакциям присоединения, не окисляется. Напротив, бензол в присутствии катализаторов вступает в характерные для предельных углеводородов реакции замещения, например, с галогенами:

C6H6 + Cl2 ® C6H5Cl + HCl

Выяснилось все же, что в определенных условиях бензол может вступать и в реакции присоединения. Там, в присутствии катализаторов он гидрируется, присоединяя 6 атомов водорода:

C6H6 + 3H2 ® C6H12

Под действием света бензол медленно присоединяет 6 атомов галогена:

C6H6 + 3Cl2 ® C6H6Cl6

Возможны и некоторые другие реакции присоединения, но все они протекают с трудом, во много раз менее активно, чем присоединение к двойным связям в веществах с открытой целью или в алициклических соединениях.

Далее, было установлено, что однозамещенные производные бензола C6H5X не имеют изомеров. Это показало, что все водородные и все углеродные атомы в его молекуле по своему положению равноценны, что также долго не находило объяснения.

Впервые формулу строения бензола предложил в 1865г. немецкий химик Август Кекуле. Он высказал предложение, что 6 углеродных атомов в бензоле образуют цикл, соединяясь друг с другом чередующимися простыми и двойными связями, и, кроме того, каждый из них соединен с одним атомом водорода: СН СН СН СН СН Кекуле предположил, что двойные связи в бензоле не неподвижны; по его представлениям, они непрерывно перемещаются (осцилируют) в кольце, что можно представить схемой: СН (I) СН (II) Формулы I и II, согласно Кекуле, СН СН СН СН совершено равнозначны и лишь ½½<=>½½ выражают 2 взаимно переходящие СН СН СН СН фазы соединения молекулы бензола. СН СН

К этому выводу Кекуле пришел на том основании, что если бы положение двойных связей в бензольном было зафиксировано, то его двухзамещенные производные C6H4X2 с заместителями при соседних углеродах должны были бы существовать в виде изомеров по положению простых и двойных связей:

½ (III) ½ (IV)

С С

НС С-Х НС С-Х

½½½<=>½½½

Формула Кекуле получила широкое распространение. Она согласуется с представлениями о четырехвалентности углерода, объясняет равноценность водородных атомов в бензоле. Наличие в последнем шестичленного цикла доказано; в частности, оно подтверждено тем, что при гидрировании бензол образует циклогексан, в свою очередь циклогексан путем дегидрирования превращается в бензол.

Однако формула Кекуле имеет существенные недостатки. Допуская, что в бензоле имеются три двойных связи, она не может объяснить, почему бензол в таком случае с трудом вступает в реакции присоединения, устойчив к действию окислителей, т.е. не проявляет свойств непредельных соединений.

Исследование бензола с применением новейших методов указывает на то, что в его молекуле между углеродными атомами нет ни обычных простых, ни обычных двойных связей. Например, изучение ароматических соединений при помощи лучей Рентгена показало, что 6 атомов углерода в бензоле, образующие цикл, лежат в одной плоскости в вершинах правильного шестиугольника и центры их находятся на равных расстояниях друг от друга, составляющих 1,40 А. Эти расстояния меньше, чем расстояния между центрами углеродных атомов, соединенных простой связью (1,54 А), и больше, чем м. соединенными двойной связью (1,34 А). Таким образом, в бензоле углеродные атомы соединены при помощи особых, равноценных между собой связей, которые были названы ароматическими связями. По природе своей они отличаются от двойных и простых связей; наличие их и обуславливает характерные свойства бензола. С точки зрения современных электронных представлений природу ароматических связей объясняют следующим образом.